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1 Introduction

Wire antennas are the oldest and most commonly used of all antenna forms.
Designs can be easily fabricated from solid wire or tubular conductors and
are (typically) very inexpensive. In this part we will start by considering
the short dipole antenna to introduce the concepts, followed by an analysis
of the more practical λ/2 dipole1.

2 The short dipole

A short2 wire of length l � λ is positioned at the origin and orientated
with the z-axis, as shown in Fig. 1. The current on the wire is assumed to
be constant, and given by

I(z) = âzI0 (1)

where I0 is constant. In the analysis of antennas we are interested primarily
in the electric and magnetic fields radiated by the currents flowing on the
surface of the antenna. Before analysing radiation, it is useful to briefly
review how the fields are expressed mathematically.

Electric and magnetic fields are vector fields—at every point in space,
(x, y, z), the field has a magnitude and direction. For example, in rectan-
gular coordinates the electric field can be decomposed into the weighted

1The short dipole is not used in practice, but is useful to understand the analysis
process before moving onto more practical (and more complicated) antennas.

2This antenna goes by at least three names in the literature: the short dipole, the
infinitesimal dipole, and the Hertzian dipole.

version: acma 2018.2



z

y

x

l

Ex Ey

Ez

(a)

z

y

x

r

θ

φ

Er

Eφ

Eθ

l

(b)

Fig. 1: Electric field components radiated from a short dipole in (a) a rect-
angular coordinate system and (b) a spherical coordinate system. Adapted
from [1, p. 113].

summation of three orthogonal unit vectors, âx, ây and âz, namely

E(x, y, z) = âxEx(x, y, z) + âyEy(x, y, z) + âzEz(x, y, z). (2)

A sketch of the electric field in rectangular coordinates is shown in Fig. 1(a).
However, when considering antennas it is usually more convenient use spher-
ical coordinates, as shown in Fig. 1(b). In this case the electric field can be
expressed as

E(r, θ, φ) = ârEr(r, θ, φ) + âθEθ(r, θ, φ) + âφEφ(r, θ, φ) (3)

where âr, âθ, and âφ are the spherical coordinate unit vectors. Similar
expressions can also be written for the magnetic fields.
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2.1 Fields radiated by a short dipole

In spherical coordinates, the fields radiated by a short dipole carrying cur-
rent I0 and orientated along the z-axis, are3

Hr = 0 (4)

Hθ = 0 (5)

Hφ = j
kI0l sin θ

4πr

[
1 +

1

jkr

]
e−jkr (6)

Er = η
I0l cos θ

2πr2

[
1 +

1

jkr

]
e−jkr (7)

Eθ = jη
kI0l sin θ

4πr

[
1 +

1

jkr
− 1

(kr)2

]
e−jkr (8)

Eφ = 0 (9)

where k is the wave-number (k = 2π
λ ) and η is the intrinsic impedance of

free-space (η ≈ 377 Ω). Visualising the field created by these components
is difficult, so in the following sections we will make simplifying approxima-
tions to focus on the fields radiated at a large distance from the antenna
(far-field); and the fields in the region very close to the antenna (near-field).

2.2 Field regions

Fig. 2 identifies three regions around an antenna: the reactive near-field ;
the radiating near-field ; and the far-field. In general, the field has distinct
properties in each, i.e., different terms in (4)–(9) will dominate in each
region. Approximate expressions for the boundaries between the regions
are [2, p. 31]:

Reactive near-field: R < 0.62
√
D3/λ

Radiating near-field: 0.62
√
D3/λ < R <

2D2

λ

Far-field: R >
2D2

λ

where D is the largest physical dimension of the antenna (consequently,
these expressions are not valid for a short dipole). It should also be noted
there is not an abrupt change in the field when crossing any of these ‘virtual’
boundaries.

3The derivation of these equations from Maxwell’s Equations can be found in any
antenna textbook, e.g., [1, pp. 100–103], [2, pp. 16–24], [3, pp. 19–25].
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Fig. 2: Field regions around an arbitrary antenna, with largest physical
dimension, D. Adapted from [1, p. 22].

2.3 Far-field

In far-field of a short dipole, where r � λ, (4)–(9) can be simplified, as any
terms proportional to 1

r2 and 1
r3 will vanish, leading to,

Hφ ' j
kI0le

−jkr

4πr
sin θ (10)

Er ' Eφ = Hr = Hθ = 0 (11)

Eθ ' jη
kI0le

−jkr

4πr
sin θ (12)

We often separate out the terms, e.g., for Eθ,

Eθ = C︸︷︷︸
constants

× 1

r︸︷︷︸
amplitude term

× e−jkr︸ ︷︷ ︸
phase term

× f(θ, φ)︸ ︷︷ ︸
field pattern

(13)

where, for the short dipole,

C = jη
kI0l

4π
(14)

f(θ, φ) = sin θ. (15)

Note that the field pattern is only a function of the angles θ and φ, and for
the short dipole it only depends on θ—what does this imply?

From (10) and (12) we observe that in the far-field the electric and
magnetic field components are:

• orthogonal (perpendicular) to each other;

• in phase;
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• transverse to the direction of propagation (i.e., Hr = Er = 0); and

• Eθ = ηHφ

• exhibit a 1
r distance dependency.

In the far-field region, the fields radiated from a short-dipole thus form a
transverse electromagnetic (TEM) wave.

Fig. 3: Nominal Eθ field pattern for a short-dipole antenna measured in the
far-field region. Adapted from [1, p. 31].

The three-dimensional far-field pattern, i.e., f(θ, φ) of a short dipole
antenna (located at the origin and orientated along the z-axis) is shown
in Fig. 3. Note that this is an ‘exploded’ view. Fig. 4(a) and (b) show
the same field pattern in the two-dimensional elevation and azimuth planes
respectively. Some qualitative observations:

• The three-dimensional pattern is somewhat torus shaped;

• Maximum radiation occurs at θ = 90◦ for all values of φ;

• No radiation occurs at θ = 0◦, i.e., along the z-axis;

• The fields are independent of φ, i.e., the pattern in the azimuthal
plane is a circle (this is not surprising as the geometry is rotationally
symmetric); and

• The 3-dB beamwidth (representing half-power) is 90◦.
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Fig. 4: Far-field Eθ field patterns, f(θ, φ), in the (a) elevation plane; and
(b) azimuth plane.

2.4 Antenna gain

The gain of antenna is a important parameter that often used in link-
budget analysis and is typically measured in dBi—dB relative to an isotropic
source4. The antenna gain provides a measure of how much it concentrates
energy in particular directions, and in this section we will outline how the
gain is related to the radiation pattern:

1. The directivity of an antenna is defined as the ratio of its maximum
radiation intensity, U , over that of an isotropic source, U0, i.e.,

D =
maxU

U0
. (16)

The directivity is a unit-less quantity.

2. The radiation intensity, U , can be expressed as

U = r2Wrad (17)

where Wrad is the radiation intensity measured in W/m2, and is given
by the Poynting vector of the far-fields,

Wrad =
1

2
< [E×H∗] . (18)

4An isotropic source radiates equally well in all directions, i.e., the field pattern is
independent of both θ and φ. It does not exist, but is a useful concept.
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3. It can be shown that the radiation intensity of an isotropic source is

U0 =
Prad
4π

(19)

leading to the following expression for the directivity

D = 4π
maxU

Prad
. (20)

4. For a lossless antenna, the gain is equal to the directivity, however in
reality, conduction losses on the metal will reduce the radiated power,
leading to

g = etD (21)

where et ≤ 1 is the antenna efficiency (dimensionless) and accounts
for the conduction loss.

The gain relative to a dipole, dBd, is also a commonly used parameter. How
can we simply convert between dBi and dBd?

2.5 Near-field

In the near field regions around a short dipole, the fields are dominated by
the terms in (4)–(9) proportional to 1/r2 and 1/r3, i.e.,

Hφ '
I0l

4π

e−jkr

r2
sin θ (22)

Er ' −jη
I0l

2πk

e−jkr

r3
cos θ (23)

Eθ ' −jη
I0l

4πk

e−jkr

r3
sin θ (24)

Eφ = Hθ = Hr = 0 (25)

For radio systems design we are typically not interested in the near-field
patterns, however, there can be significant consequences to the far-field
pattern if we place objects (particularly conductors) in the near-field.

Er or Eθ

Hφ

!t

!t

Fig. 5: Phasor diagram showing the relationship between the E and H field
components in the near field.
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An interesting consequence of (22)–(25) is that the average power in
the near-field of an infinitesimal dipole antenna is zero! It is important
to remember that the vector fields in (4)–(9) are assumed to be in time-
harmonic form, e.g.,

E(t) = <
(
E ejωt

)
(26)

H(t) = <
(
H ejωt

)
. (27)

We can view the vector fields E(t) and H(t) as the projection onto the
real-axis of the vectors E and H rotating at ωt—this is the phasor repre-
sentation and can be very helpful in visualising the relationships between
vector quantities.

Fig. 5 shows a phasor diagram of the Er, Eθ and Hφ components, as
given by (6), (7), and (8). At this stage we are not interested in the mag-
nitudes of the components, but rather their relative phase—specifically, we
observe that the electric field vectors are offset in time from the magnetic
field vector by 90◦. This offset arises from the presence of j in (7) and (8),
which is not present in (6).

ℜ [Hφ]

ℜ [Er] or ℜ [Eθ]

S = E×H

(a)

(b)

Fig. 6: (a) Projection of the E and H phasors onto the real-axis; (b) âθ and
âr components of the instantaneous Poynting vector.

Fig. 6(a) shows the projection of the phasors onto the real-axis, where
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this 90◦ offset is also apparent. It can be shown5 that the instantaneous
Poynting vector is proportional to the product the field quantities plotted
in Fig. 6(a), and this result is depicted in Fig. 6(b). The power in the
near field region thus flows outward for a quarter-cycle, then inwards for
a quarter-cycle (which is then repeated), leading to no net radiation of
power in the near-field. Power can be coupled out if a receiving antenna
is placed in the near-field (e.g., wireless power transfer) but in this case the
analysis would need to consider the transmitting and receiving antennas as
a single coupled system. Such an analysis can be complicated as it requires
very accurate modelling of the surface currents which are sensitive to the
geometry.

3 Finite-length dipoles

For the infinitesimal dipole we assumed the length was much smaller than
the wavelength and thus the current can be approximated as constant. On
an arbitrary “long” dipole this assumption does not hold. Determining
the actual current distribution on a wire antenna can be complicated, and
for complex shapes often requires a numerical solution. However, once the
current distribution is found, the radiation pattern of an arbitrary wire
antenna can be determined by subdividing the length into a number of
short dipoles of length ∆z′ and applying superposition. As the number of
subdivisions is increased, each short dipole approaches a length dz′.

Fig. 7 shows a “long” wire dipole antenna, orientated along the z-axis
with the feed located at the origin. To compute the Eθ field in the far-field
from this antenna, we will start by considering the field radiated from a
short dipole that is located at z′ from the origin. This is given by

dEθ ' jη
kI(z′)e−jkR

4πR
sin θ dz′ (29)

where R is the distance from the dipole at z′ to a point P in the far-field,
Note that R is not the same as r, which is the distance from the origin to
P . A far-field approximation is used to simplify (29):

R ' r − z′ cos θ for phase terms (30)

R ' r for amplitude terms (31)

leading to

dEθ ' jη
kI(z′)e−jkr

4πr
sin θe+jkz′ cos θ dz′. (32)

5Mathematically, the instantaneous Poynting vector can be expressed

W(t) = E(t)×H(t)

= <
[
ârEre

jωt + âθEθe
jωt

]
×<

[
âφHφe

jωt
]

= âr<
[
Ere

jωt
]
× âφ<

[
Hφe

jωt
]

+ âθ<
[
Eθe

jωt
]
× âφ<

[
Hφe

jωt
]

= âθ<
[
Ere

jωt
]
<
[
Hφe

jωt
]

+ âr<
[
Eθe

jωt
]
<
[
Hφe

jωt
]
. (28)

The two terms in (28) have a similar form, i.e., the multiplication of the real-projection
of the E and H phasors, leading to the representation sketched in Fig. 6(b).
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Fig. 7: Far-field approximation for a “long” dipole. Adapted from [1, p. 113].

The total Eθ field is thus the summation of all the dz′ elements from − l
2

to l
2 , and in the limit, this summation becomes an integration,

Eθ '
ˆ l

2

− l
2

dEθ

' jη ke
−jkr

4πr
sin θ

[ˆ l
2

− l
2

I(z′)ejkz
′ cos θdz′

]
. (33)

It should be noted that the term outside the brackets is simply the Eθ field
radiated by a unit-current short dipole located at the origin; while the term
in the brackets is a function of the current distribution on the antenna.

4 λ/2 dipole

The current on a λ/2 dipole can be approximated as

I(z) = âzI0 sin

[
k

(
l

2
− z
)]

(34)

where I0 is the nominal maximum current. As shown in Fig. 8(a), it is as-
sumed the maximum current occurs at the antenna terminals—in practice,
this will drop slightly around the connection point, as shown in Fig. 8(b)—
and goes to zero at the ends of the antenna. These deviations generally
do not have a large impact on the accuracy of the radiation patterns. The
radiation pattern is determined by essentially summing up small sections of
current (i.e., integrating), and this has an averaging/smoothing effect.

10



z

I0 sin

[

k

(

l

2
− z

)]

Iz

z

Iz

(a) (b)

Fig. 8: Current distribution on a λ/2 dipole: (a) ideal case; (b) real case
with a drop in current around the connection point.

4.1 Field patterns (far-field)

Substituting (34) into (33) (and after some manipulations6) leads to general
expressions for a dipole of length l,

Eθ ' jη
I0e
−jkr

2πr

[
cos
(
kl
2 cos θ

)
− cos

(
kl
2

)
sin θ

]
(36)

Hφ ' j
I0e
−jkr

2πr

[
cos
(
kl
2 cos θ

)
− cos

(
kl
2

)
sin θ

]
. (37)

For a dipole with l = λ/2, these expressions simplify to

Eθ ' jη
I0e
−jkr

2πr

[
cos
(
π
2 cos θ

)
sin θ

]
= ηHφ (38)

Hφ ' j
I0e
−jkr

2πr

[
cos
(
π
2 cos θ

)
sin θ

]
. (39)

Similar to the short dipole, the field pattern term (which only depends on
θ and φ) can be separated out,

f(θ, φ) =
cos
(
π
2 cos θ

)
sin θ

. (40)

The field pattern alsodoes not depend on φ, i.e., the radiation pattern in
the azimuth plane is a circle (due to symmetry).

Note that the magnitudes of the electric and magnetic fields only differ
by the factor η, representing the impedance of free-space. Similar to the
short-dipole, the fields in the far-field region are TEM. While (38) and (39)
appear to be more complicated than the expressions for the short dipole,
the radiation patterns turns out to be quite similar, as shown in Fig. 9
which compares a polar plot (in the elevation plane) of a short dipole (15)
with a λ/2 dipole (40). The 3-dB beamwidth of the λ/2 dipole is 78◦.

6Including use of the integralˆ
eαx sin(βx+ γ) dx =

eαx

α2 + β2
[α sin(βx+ γ)− β cos(βx+ γ)] (35)
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Fig. 9: Elevation plane field pattern for λ/2 dipole compared with a short
dipole.

4.2 Input impedance

The impedance seen looking into the terminals of an antenna is an important
parameter that must be known to match the antenna to transmission line,
thus providing maximum power transfer. The input impedance can be
divided into two components:

Zin = Rin + jXin. (41)

• The input resistance, Rin, represents dissipation of power—which oc-
curs in two ways: radiation, i.e., power that leaves the antenna and
does not return; and Ohmic losses, i.e., power lost by heating,

Rin = RRad. +ROhmic. (42)

Typically the power lost to heating is small compared to the radiated
power: this is quantified by the radiation efficiency, er which is the
ratio of the radiation resistance, RRad. to Rin, i.e.,

er =
RRad.

RRad. +ROhmic
(43)

and is often expressed as a percentage. Generally, RRad. can be found
relatively easily by equating the input power (since we know the cur-
rent at the input terminals) with the expression for the power radiated
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in the far field, which is computed by taking a surface integral of the
Poynting vector over a sphere that encompasses the antenna. Simi-
larly, ROhmic can be determined using expressions for a conductor in
an AC field. For a λ/2 dipole Rin ≈ 73 Ω and typically er > 90%.

• The input reactance, Xin, represents the (reactive) power stored in
the near-field. Calculating Xin requires very accurate expressions
for the current excited on the antenna (often to a higher degree of
precision than that required to find the radiated fields). Accordingly,
the reactance also depends on the thickness of the wire. It is usually
not possible to find closed form expressions for Xin, and numerical
electromagnetic solutions are typically required.

The input impedance also depends on how the transmission line feed is
connected (this can usually only be included using numerical approaches).

4.3 Longer dipoles and bandwidth

Dipole antennas radiate best when the currents flowing along the physical
length of the antenna establish a resonant mode. The current must go to
zero at the ends of the antenna and hence resonant modes can be established
when l = nλ

2 , for n = 1, 2, . . .. The case when n = 1 is the λ/2 dipole. The
current distributions when n = 2 and n = 3 are sketched in Fig. 10(a) and
(b). The corresponding radiation patterns in the elevation plane are shown
in Fig. 11, and are computed using (36).

z

Iz

z

Iz

(a) (b)

Fig. 10: Current distribution on (a) λ dipole and (b) 1.5λ dipole.

Some observations to note are:

• The radiation pattern of the 3λ/2 dipole has a number of side-lobes,
which is typically an undesirable characteristic.

• The λ dipole would seem to be a reasonable antenna, with a higher
gain (2.0) and correspondingly narrower beam-width than the λ/2
dipole.

• However, as shown in Fig. 10(a) at the feed connection point in the
centre of the dipole, the current distribution required to achieve reso-
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Fig. 11: Elevation plane field pattern comparing a λ dipole with a 1.5λ
dipole.

nance goes to zero, i.e., Zin approaches infinity, making it very difficult
to match the antenna to the transmission line.

Resonant behaviour also implies dipole antennas will be narrowband.
For example, Fig. 12 shows the magnitude of the reflection coefficient (also
referred to as the S11) as a function of frequency for a λ/2 dipole antenna
designed for operation in the 2.48 GHz Wifi band. Some observations to
note are:

• A reflection coefficient close to 0 dB (what is this in linear units?)
indicates most of the energy is being reflected, and in the context of
antennas, this means it is not being radiated!

• Conversely, a small reflection coefficient implies the energy is being
radiated (or absorbed).

For the dipole in Fig. 12 we can observe there is only a relatively narrow
band of frequencies where the reflection coefficient is below −15 dB, i.e.,
between 2.36–2.6 GHz (240 MHz bandwidth). This antenna would thus be
suitable for a Wifi system in the 2.48 GHz band, but very unsuitable for
the 5.8 GHz band! The secondary resonance around 7.8 GHz is when the
electrical length of the antenna is approximately 3λ/2—this is broader, but
only achieves an S11 of −10 dB and with the unwanted radiation pattern
in Fig. 11.

As an aside, the result in Fig. 12 was computed using CST Microwave
Studio for a realistic dipole antenna, i.e., the wire was assumed to have some
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Fig. 12: Reflection coefficient for a λ/2 dipole antenna designed for opera-
tion at 2.48 GHz.

thickness (3 mm in this case) and a 3 mm gap for the feed was also assumed.
Accordingly, to achieve resonance, the length of the antenna needed to be
reduced from ltheory = λ/2 = 60.5 mm to lopt. = 55.7 mm.

4.4 Baluns

In this section we consider the impact of connecting a dipole antenna to
a transmission line. For example, Fig. 13 shows one way a dipole antenna
can be physically attached to a coaxial transmission line. The coax inner
conductor is connected directly to the left-arm of the dipole; while the
right-arm is connected to the outer conductor of the coax. The left- and
right-arms of the dipole are thus connected differently and the asymmetry
can alter the current distribution on the antenna. In particular, while the
current flowing on the left-arm of the dipole will be the same as the current
on the inner conductor, i.e.,

I1 = Id−left (44)

this does not hold for the right-arm of the dipole, as a current can also flow
on the outside surface of the outer conductor, i.e.,

I2 = Id−right + I3. (45)

Effectively, this reduces the current flowing on the right-arm of the dipole,
as depicted in Fig. 13, leading to an imbalance and thereby altering the
radiation pattern and is undesirable characteristic. Specifically the radia-
tion pattern due to the imbalance is often “squinted”, i.e., the direction of
maximum radiation is offset.
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Fig. 13: “Direct” physical connection of a dipole antenna to a coaxial trans-
mission line showing current distribution on the arms, leading to undesirable
radiation characteristics.
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Zin = ?

λ

4

(a)

(b)

Fig. 14: (a) Balun constructed from a λ/4 sleeve of metal wrapped around
the coaxial transmission line and shorted to the outer conductor; (b) equiv-
alent transmission line circuit formed by the sleeve and outer conductor.
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One solution to this problem is to use a balun. A balun is a relatively
simple device that can be used to balance inherently unbalanced systems7,
by cancelling (or “choking”) the outside/external current. Fig. 14(a) shows
one popular balun configuration for a dipole antenna fed by a coaxial trans-
mission line. It consists of a sleeve of metal, λ/4 in length, wrapped around
the transmission line and electrically connected (i.e., shorted) to the outer
conductor at one end.

Electrically, the sleeve and the outer conductor form another transmis-
sion line, where the equivalent circuit is shown in Fig. 14(b). The input
impedance of this transmission line (looking in at the top end) is very
large8, ideally infinity, and thus the current flowing on the outside (I3) will
be eliminated, balancing the system.

5 Corner reflector antennas

The radiation pattern of a dipole antenna in the azimuth plane is omni-
directional, i.e., the antenna radiates (or receives) equally well in all direc-
tions. This is often a desirable characteristic of antennas that are mounted
on mobile devices or where area coverage is required. However, there are
often scenarios where a focused, directional beam is required (e.g., to reduce
interference).

Reflectors can be placed behind an antenna to direct energy in a specific
direction. A popular choice for dipole antennas is the corner reflector, as
shown in Fig. 15. A vertically orientated dipole antenna is placed at a
distance s from a corner that is formed by two perfect electrical conductor
(PEC) sheets with width w and height h (the angle between these PEC
sheets is α, and the antenna is located at α

2 ). For this analysis we will
assume the corner is infinite in extent, though measurements with w ' 2s
and h ' 1.2l have found to agree well with the theory.

Radiation pattern: The radiation pattern of a corner reflector can be
found by considering the images created by reflecting the source antenna
in the PEC sheets. For example, Fig. 16 shows that when α = 90◦ three
images of the original dipole are formed. The far field pattern can be found
by summing the electric fields from each of the three images with the electric
field produced by the actual dipole. Note that due to symmetry, these are
all located at a distance s from the origin. Also, due to the PEC boundary
conditions9 the fields radiated from image #2 and image #4 are negative,
with respect to the field from the dipole.

The total electric field can be expressed

E(r, θ, φ) = 2 [cos(ks sin θ cosφ)− cos(ks sin θ sinφ)]︸ ︷︷ ︸
reflector gain

f(θ, φ)
e−jkr

r
(46)

7Hence the name: balun = balanced to unbalanced.
8The λ/4 length of transmission line transforms the short circuit into an open circuit.
9Specifically, that the tangential component of an electric field must be zero on a PEC

boundary.
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Fig. 15: Geometry of a corner reflector antenna.

where f(θ, φ) is the field pattern of the dipole used, i.e., (15) for a short
dipole, or (40) for a λ/2 dipole. The term of interest here is the reflector
gain, as this suggests for certain values of s it is possible to increase the
electric field strength by a (linear) factor of 4. What is the gain of this
antenna in linear units? (and in dB?)

Fig. 17 shows the three-dimensional plot of the field pattern for a corner
reflector with s = λ/2. The radiation pattern has a single main lobe and
in this case the direction of maximum radiation is along the x-axis, as
expected, given the position of the reflectors. Fig. 18 shows a polar plot
of the corner reflector radiation pattern in the azimuth plane compared
with the omni-directional pattern of a λ/2 dipole. The maximum of the
corner reflector field pattern is 4 times that of the λ/2 dipole. However,
the corner reflector will only radiate in the region between the PEC planes
(−45◦ – 45◦), i.e., the gain is only being increased by focusing the energy.

The radiation patterns in Fig. 17 and Fig. 18 are the ideal patterns
assuming the PEC sheets forming the corner are infinite in extent. In
reality, with finite metal sheets, some backlobes will be also be present due
to diffraction around the edges of the sheet.

6 Printed Antennas

Antennas fabricated using printed circuit board techniques were originally
proposed in the 1950s and remain popular due to ease of construction, low
profile and low manufacturing costs. In this section we will consider the
basic rectangular patch antenna.

18



Dipole

Image #2

Image #3

Image #4

x

y

s

90◦

Fig. 16: Location of the images formed by a corner reflector. Note the
change in sign for Images #2 and #4.

Fig. 17: Three-dimensional field pattern of a λ/2 corner reflector.
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Fig. 18: Azimuth plane radiation pattern of a corner reflector compared
with that of a λ/2 dipole.

6.1 Rectangular Patch

The geometry of a rectangular patch antenna is shown in Fig. 19. The patch
has dimensions L×W and is fed by a microstrip transmission line10. The
patch is separated from the infinite ground plane by a dielectric substrate,
with a known relative permittivity, εr, and with thickness h (typically h�
λ). The length of the patch, L, is chosen so that a resonant mode can be
established, i.e.,

L = 0.5λd = 0.5
λ0√
εr

(47)

where λ0 is the free-space wavelength and λd is the wavelength when prop-
agating inside the dielectric substrate.

6.2 Field Distributions

The electric field distribution between the patch and the ground plane is
shown in Fig. 20. The electric field is perpendicular to the ground plane
and the patch, and is largest at the ends of the patch11. At the ends of the
patch the fringing fields are exposed and are responsible for the radiation.
In practise, the fringing fields at the ends of the patch also act to slightly
increase the electrical length. Thus, often L needs to be reduced slightly,
e.g.,

L ≈ 0.49λd (48)

10The rectangular patch antenna can also be fed from a coaxial line passing through the
dielectric substrate and ground-plane, but the results are very similar to the microstrip-
fed patch.

11It is assumed these electric fields are constant across the width of the patch.
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Fig. 19: Geometry of a rectangular patch antenna with microstrip line feed.
Adapted from [2, p. 211].
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Fig. 20: Side view through a patch antenna showing the electric fields.
Fringing fields are shown in blue. Adapted from [2, p. 211].

to ensure resonant behaviour.

6.3 Far-field pattern

An approximate expression for the radiation pattern is given by [2, p. 212]

f(θ, φ) =
sin
(
kW
2 sin θ sinφ

)
kW
2 sin θ sinφ

cos

(
kL

2
sin θ cosφ

)
(49)

and a three-dimensional plot of this expression is shown in Fig. 21. The
patch lies in the x–y plane and we observe that maximum radiation occurs in
the z direction. Note that no fields exist below the infinite ground plane—in
practise, a finite ground plane that is larger than the patch is required, but
some fields will be diffracted, leading to small back-lobes. Fig. 22 shows
two-dimensional elevation-plane cuts through the full 3D pattern—these
plots are very common in antenna specifications and data-sheets as full 3D
patterns can be difficult to measure and interpret quantitatively.

6.4 Input impedance

The patch width W is known to affect the input impedance, and an ap-
proximate expression for Zin is,

Zin = 90
ε2r

εr − 1

(
L

W

)2

. (50)
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Fig. 21: Three dimensional radiation pattern from a patch antenna with
geometry specified in Fig. 19.
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Fig. 22: Elevation plane patterns for a rectangular patch antenna.
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Note that this expression is purely real as the reactance is zero at reso-
nance. From (50), we can choose W to match the patch to the characteristic
impedance of the microstrip transmission line.

6.5 Bandwidth

The bandwidth of patch antennas tends to be small and is often a limiting
factor when these are used for wideband systems. The bandwidth (as a
fraction of the centre frequency) can be approximated as

B = 3.77
εr − 1

ε2r

W

L

h

λ
. (51)

This indicates that bandwidth can be increased by changing the substrate
properties, i.e., lowering εr and/or increasing h. However, this must be done
with care as increasing h and decreasing εr will excite unwanted surface
waves, which cause side-lobes and cross-polarisation.

7 Broadband Antennas

In many applications an antenna must operate over a wide range of frequen-
cies. We have already seen in section 3.3 that resonant antennas typically
operate at a single frequency determined by the fundamental mode (opera-
tion at higher order modes is also possible, but often introduces undesirable
characteristics). For a resonant antenna, we define the fractional bandwidth
as

fb =
BW

fc
(52)

where BW is the bandwidth of the antenna (usually where |Γ| < −15 dB)
and fc is the centre frequency at resonance. Highly resonant antennas
typically attain a fractional bandwidth of less than 2–3%. It should be
noted there is no strict definition for a broadband antenna, but typically an
antenna with fb > 20% is considered ‘wideband’.

One widely used approach to increase antenna bandwidth is to design
a structure that has multiple closely-spaced resonant modes resulting in
broadband performance. In this section we will examine antennas that use
variations of this approach to increase the bandwidth.

7.1 Log-Periodic Antennas

The log-periodic antenna is formed from a number of dipole antennas con-
nected together and fed from the same source. The underlying concept is
that the structure scales onto itself periodically as the frequency (and hence
wavelength) changes.

Fig. 23 shows an infinite array of dipole antennas with different lengths
and separation distances. Consider dipole element n, with corresponding

length ln: this element is designed to operate at frequency fn ≈ 2
c0
ln

. By

appropriately spacing the resonant frequencies of each dipole element we can
maintain broadband performance for all frequencies. Note that in practise
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Fig. 23: Basic log-periodic dipole array, adapted from [3, p. 147].

we truncate the infinite array: the upper and lower frequency limits are thus
determined by the length of the shortest and longest element respectively.

For a log-periodic antenna, element n+ 1 is related to the n-th element
via,

xn+1

xn
=
ln+1

ln
=
dn+1

dn
= τ. (53)

If we multiply all elements in this array by the factor τ the antenna array
will scale onto itself, i.e., element n becomes element n + 1, element n + 1
becomes element n + 2, etc. The corresponding resonant frequencies are
thus12:

f1 (55)

f2 = τf1 (56)

f3 = τf2 = τ2f1 (57)

fn = τn−1f1. (58)

Experimentally a value of τ between 0.8–0.96 has been found to provide
good performance. The log-periodic array has a directional radiation pat-
tern, with a main lobe along the axis of the antenna (in the direction of the
shortest element). Experimentally, it has been found a 180◦ phase reversal
is required between adjacent elements and this is typically accomplished via
a twisted line feed, as shown in Fig. 24.

12The log-periodic antenna gets it’s name from the fact that

ln

(
fn

f1

)
= (n− 1) ln τ, (54)

where ln τ is termed the log-period.
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Fig. 24: Twisted line feed for a log-periodic array.
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Fig. 25: Increase in overall bandwidth by an additional resonance.

7.2 Patch Antennas

The ‘standard’ patch antenna is a resonant device with fractional band-
width typically between 1–2%. This makes it impractical for applications
in wireless communications where increasingly larger bandwidth is required.
However, by introducing various parasitic elements (i.e., antenna elements
that are not driven) or slots additional resonances can be formed. As shown
in Fig. 25 when the additional resonance frequencies are close to the original
resonance frequency the overall frequency response is broadened.

Fig. 26 shows one popular approach, where a U-shaped slot is etched
into the top layer of a rectangular patch antenna. This design can increase
the fractional bandwidth to 30–40%, as the currents along the edges of the
slot introduce additional resonances. However, the exact dimensions of the
slot need to be determined using full wave simulations (e.g., the FDTD
method) or via experimentation.
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Fig. 26: U-shaped slot etched into top-layer of patch antenna to increase
bandwidth.

7.3 Biconical Antennas

Fig. 27 shows a diagram of a biconical antenna connected to a coaxial
transmission line. It is assumed the outer conductor of the coaxial connector
is connected to the lower cone, while the inner conductor is connected to the
upper cone. An infinite biconical structure will support a spherical TEM
wave. In this case the characteristic impedance of the resulting ‘biconical
transmission line’ is given by [3, p. 90],

Zc =
Z0

π
ln cot

θ0

2
(59)

where Z0 is the intrinsic impedance of free space Z0 =

√
µ0

ε0
≈ 377 Ω. It

is noted that the impedance of the infinite biconical ‘antenna’ in (59) is
independent of frequency and only depends on the cone angle.

With finite length cones, the reflection created by the termination must
be taken into account, which serves to establish various modes along the
metal surface. The full analysis of the finite biconical antenna is complex,
however, for relatively small angles, e.g., θ0 < 30◦, fractional bandwidths of
over 100% are possible [3, p. 91]. The biconical antenna is omnidirectional
in the azimuth plane (as expected due to symmetry) and displays a pattern
similar to that of a dipole antenna in the elevation plane—however, the
shape of the pattern does change over frequency.

8 Measuring Antenna Parameters

8.1 Input Impedance

The input impedance of an antenna can be calculated from the reflection
coefficient13 measured when the antenna is connected to a transmission line.

13As the impedance is in general a complex quantity, it is necessary to measure the
magnitude and phase of the reflection coefficient
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Fig. 27: Bicone antenna connected to a coaxial transmission line.

At a single frequency a slotted transmission line (or similar probe) can be
used. However, to examine the reflection coefficient over a large frequency
range a Vector Network Analyser (VNA) is required.

For antenna impedance measurements typically only a single port on
the VNA is used14. The input signal is a narrowband tone which is swept
over a range of frequencies. Due to the impedance mismatch between the
antenna and transmission-line, signals will be reflected back. These reflected
signals are separated from the incident signal using directional couplers.
It should be noted that the directional couplers are not located at the
terminals where the the ‘antenna-under-test’ is connected. Accordingly it
is necessary to ‘remove’ the effect of the cables (i.e., the propagation delay
and corresponding phase shift), which would otherwise distort the results.
This is usually accomplished by ‘calibrating’ at the ends of the cables, e.g.,
with a short-circuit, open-circuit, and known loads.

8.2 Radiation Patterns and Polarisation

• Radiation pattern is inherently 3D: but 2D ‘cuts’ along elevation and
azimuth useful (and easier to make).

• Usually take measurements in the far field: not always possible (size
constraints), possible to take near-field measurements and transform
these into the far-field (but need to be very precise with high sampling
density).

• Need to prevent reflections from the environment when taking mea-
surements (e.g., anechoic chamber).

14Most VNAs are multi-port devices allowing ‘through’ or response measurements of
the device-under-test.
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• Must recognise the fields are vector fields: orientation (polarisation)
of the transmitting and receiving antennas is very important.
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