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1 The receiver front-end

In a typical radio system the received signal can be very weak (due to prop-
agation loss). A high gain amplifier is thus required to increase the signal so
that it will fall in the range that can be captured with the detector. Fig. 1
shows the superheterodyne receiver configuration, which forms the basis of
most modern receiver designs. The variable frequency Local Oscillator is
used to tune the receiver so that the desired frequency in the incoming sig-
nal is down-converted by the mixer to a (fixed) Intermediate Frequency
(IF). The advantage of the superheterodyne configuration is that all com-
ponents (e.g., filters) from the IF stage onward can be standardised. It is
difficult to make tunable and selective filters for RF frequencies.
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Fig. 1: Block diagram for a superheterodyne receiver.
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2 Linearity

Components of a radio system that (generally) are linear include:

• Antennas;

• Transmission lines; and

• Matching networks and passive RF filters.

A key property of linear systems is superposition, e.g., suppose the input
signal, x, to a linear system G(·) consists of two components a and b, i.e.,
x = a+ b then the output y, is y = G(a) +G(b). This property is useful as
it allows us to decompose a signal and analyse the system response to each
component separately without losing any information. It also implies that
no new frequency components (that were not already present in x) will be
generated.

Components of a radio system that are non-linear include:

• Amplifiers;

• Mixers; and

• Circulators.

In this case, we will find that frequency components that were not in the
input may be present in the output. Sometimes the non-linear behaviour
can be beneficial and sometimes detrimental to the performance.

2.1 Taylor series expansion

The output of any non-linear system can be expressed using the Taylor
series expansion, given by

Vo = a0 + a1Vs + a2V
2
s + a3V

3
s + . . . (1)

where Vs is the input signal, Vo is the output signal, and an is the coefficient
of the n-th term in the expansion. We will consider two types of input signal,
single-tone:

Vs = V cosωt (2)

and two-tone

Vs = V1 cosω1t+ V2 cosω2t. (3)

We will now analyse each term in the Taylor series expansion (up to third
order).

3 Single-tone input

Substituting (2) into (1) leads to

Vo = a0 + a1V cosωt+ (a2V cosωt)2 + (a3V cosωt)3 + . . . (4)
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which can be simplified via trigonometric identities to

Vo = a0 + a1V cosωt+
a2V

2

2
+

a2V
2

2
cos 2ωt+

3a3V 3

4
cosωt+

a3V
3

4
cos 3ωt+ . . . (5)

We observe this expression contains:

0. The DC terms: a0 and a2V
2

2
, representing the bias/offset conditions;

1. The linear terms at ω: a1V cosωt and 3a3V
3

4
cosωt), representing the

gain—ideally for an amplifier the first term should dominate;

2. A term at 2ω: a2V
2

2
cos 2ωt, representing second harmonic distor-

tion; and

3. A term at 3ω: a2V
2

2
cos 2ωt, representing third harmonic distor-

tion.

Usually the DC and harmonic terms are not a problem as we can filter these
off, but sometimes this is not possible, e.g., very large bandwidth systems.
Sometimes the higher harmonics may be useful, e.g., a frequency multiplier.

4 Two-tone input

For the two-tone input we start by substituting (3) into (1)

Vo = a0 + a1 (V1 cosω1t+ V2 cosω2t) + a2 (V1 cosω1t+ V2 cosω2t)
2

+ a3 (V1 cosω1t+ V2 cosω2t)
3 + . . . (6)

We will now consider the second and third order terms in (6) separately.

4.1 a2V
2
s
term

We can expand the a2V
2
s term, leading to

Vo = a2 (V1 cosω1t+ V2 cosω2t)
2

= a2
(

V 2
1 cos2 ω1t+ V 2

2 cos2 ω2t+ 2V1V2 cosω1t cosω2t
)

. (7)

Similar to (5) the first two terms in (7) give us a DC term and components
at 2ω1 and 2ω2. The third term in (7) can be expanded using the product-
to-sum identity,

cosω1t cosω2t =
1

2
cos (ω1 + ω2) t+

1

2
cos (ω1 − ω2) t. (8)

We thus observe components at frequencies that are the sum (ω1 + ω2)
and difference (ω1 − ω2)of the input frequencies. This behaviour can be
productively used in an RF device called a mixer. As shown in Fig. 2, the
mixer is a three-terminal device (two inputs, one output) than functions as
an analog multiplier. Mixers are used in RF transmitter circuits to modulate
the carrier signal, and similarly on the receiver side to move the received
signals to a specified intermediate frequency.
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Fig. 2: RF mixer block diagram.

4.2 a3V
3
s
term

The third order terms are often the greatest culprit in causing unwanted
distortion products,

Vo = a3 (V1 cosω1t+ V2 cosω2t)
3

= a3
(

V 3
1 cos3 ω1t+ V 3

2 cos3 ω2t+ 3V 2
1 V2 cos

2 ω1t cosω2t+ 3V1V
2
2 cosω1t cos

2 ω2t
)

.
(9)

The first two terms reduce to the frequency components already discussed,
i.e., cos3 ω1t → ω1, 3ω1 and cos3 ω2t → ω2, 3ω2. Applying trigonometric
identities to the last two terms leads to:

3a3V 2
1 V2

2

⎛

⎜
⎜
⎝
cosω2t+

1

2
cos (2ω1 − ω2) t+

1

2
cos (2ω1 + ω2) t

︸ ︷︷ ︸

IMD

⎞

⎟
⎟
⎠

+

3a3V1V
2
2

2

⎛

⎜
⎜
⎝
cosω1t+

1

2
cos (2ω2 − ω1) t+

1

2
cos (2ω2 + ω1) t

︸ ︷︷ ︸

IMD

⎞

⎟
⎟
⎠

. (10)

In addition to the components at ω1 and ω2 (these are distortion since the
amplitude depends on V1 and V − 2), we now have third order intermod-
ulation distortion (IMD) components. These appear at frequencies

2ω1 − ω2

2ω1 + ω2

2ω2 − ω1

2ω2 + ω1.

Why are these a problem?

• For example, consider an amplifier with inputs f1 = 100 MHz and
f2 = 101 MHz, the ideal (linear) output would be just these two
components. The actual output (up to third order terms) will contain
components at:

– 200, 300, 202, 303 MHz (harmonics)

– 1, 201 MHz (2nd order IMD)

– 99, 102, 301, 302 MHz (3rd order IMD).

The actual output is sketched in Fig. 3. Some of these components
could be filtered, but the components at 99 MHz (2f1 − f2) and
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Fig. 3: Output spectrum from a two-tone signal applied to a 3rd order
non-linear system

102 MHz (2f2 − f1) are of particular concern as these are very close
to the original transmission frequencies and are very difficult (if not
impossible) to filter.

• Consider an input signal to a (non-linear) amplifier with a desired
component at 100 MHz, and undesired interfering components at
105 MHz and 110 MHz. The undesired components will produce an
IMD component at 100 MHz (2 × 105 − 110). This IMD component
is at the same frequency of the desired signal. No amount of filtering
can remove this product!

5 Characterising non-linear behaviour

5.1 Gain compression

For an ideal linear amplifier, a plot of the output power (dBm) versus the
input power (dBm) would give a straight line, as depicted in Fig. 4. In
reality, as the input power increases, a point is reached where the output
no longer increases at the same rate—this occurs due to gain compression
and results in signal distortion and clipping of the output waveform.

(dBm)

Output
power

Input power (dBm)

1 dB

gain compression

Fig. 4: Gain compression for an amplifier.

For the case where only one signal is present, the output (at ω and
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Fig. 5: Second and third order intercept points for an RF amplifier (what
is the gain of this amplifier?)

assuming we have su�ciently filtered the harmonics) is

Vo = a1V cos!t+
3

4
a3V

3 cos!t. (11)

The ratio of the gain with distortion to the ideal linear gain is thus

a1 +
3
4a3V

3

a1
(12)

and is referred to as the single-tone gain compression factor.

5.2 Intercept points

From (10) and (7) the output amplitude of the n-th order IMD terms is
proportional of the input signals raised to the n-th power. Therefore, a plot
of the output signal versus the input signal on a log-log scale (i.e., dB-dB),
will be straight lines with gradients of 2 and 3 for the second and third
order IMD products respectively. These lines will intersect with the linear
(desired) output curve at the second and third order intercept points, as
shown in Fig. 5.

The intercept points be specified by either the input (e.g., for mixers) or
the output (e.g., for amplifiers) power at the intersection, and is a measure
of the intermodulation distortion. It should be noted that the component
or device would normally be operated well away from the intercept point,
is there better parameter to use?
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Fig. 6: Receiver dynamic range for a third order IMD terms.

5.3 Two-tone dynamic range

One suitable operating region is where the IMD terms are below the min-
imum discernible signal (mds) level (i.e., the receiver noise floor). The
dynamic range of the receiver is defined as the region between the mds
(for the linear component) and where the third order IMD terms rise above
the mds. The dynamic range for third-order IMD is

DR =
2

3
(Pincpt �mds) (13)

which is derived graphically in Fig. 6.

6 Discussion

Non-linear distortion can also be introduced by hardware impairments in the
transmitter. Of particular concern are out-of-band emissions, which may
cause interference to other neighbouring systems (or users in a multiple-
access system).

We have only considered tone inputs, but it is important to recognise
that the e↵ects of non-linear distortion only get more complicated for the
wideband signals (e.g., 1–100+ MHz bandwidth) typically encountered in
modern wireless communication systems. Designing digital and RF systems
to compensate for the non-linear distortion introduced by the RF amplifiers
(and other non-linear components) remains a challenge.
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