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1 Introduction

Waveguide is a form of transmission line that is very commonly used in the
radio-frequency (RF), microwave and millimeter-wave bands1 to carry sig-
nals and power. Waveguide is described by the shape of the cross-section,
and typically these are rectangular or circular. While most waveguides at
RF are made from metal, dielectric waveguides are also possible, particu-
larly at higher frequencies (e.g., optical fibre), and curved sections can also
be fabricated. In this module we will restrict our analysis to straight, rectan-
gular metal waveguide. As with all other electromagnetic problems, waveg-
uides are subject to Maxwell’s Equations (and the corresponding boundary
conditions), however, unlike most, metal waveguides have exact analyti-
cal solutions. We will start by considering the electric and magnetic fields
formed by a plane wave incident on a perfectly conducting boundary.

2 Wave Reflection at a Perfectly Conducting
Boundary

Fig. 1 shows a plane wave incident on a perfect electric conductor (PEC),
with angle of incidence θi. The wave is assumed to have perpendicular
polarisation, i.e., the electric field, E, is perpendicular to the plane of inci-
dence. (The plane of incidence is the plane that contains the incident ray
and the normal to the surface). This polarisation is also termed ‘horizontal’

1While we will not consider optical fibre in this course, it is also a form of waveguide.
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Fig. 1: Perpendicular polarised plane wave incident on a PEC surface.

polarisation2.

2.1 Incident Wave

In Fig. 1, the incident and reflected plane waves (when considered sepa-
rately) are transverse electromagnetic waves, i.e., there are no electric or
magnetic field components in the direction of propagation. An expression
for the electric field of the incident wave3 in Fig. 1 is

Ei(x, z) = E0 exp {−jk (−x cos θi + z sin θi)} ây, (1)

where E0 represents the magnitude of the incident wave, and k is the

wavenumber, given by k =
2π

λ
. The corresponding expression for the mag-

netic field is given by

Hi(x, z) =

[
−E0

η0
sin θiâx −

E0

η0
cos θiâz

]
exp {−jk (−x cos θi + z sin θi)} ,

(2)

where η0 is the intrinsic impedance of free space.

2.2 Reflected Wave

Expressions for the electric and magnetic fields of the reflected wave in
Fig. 1 are

Er(x, z) = Er exp {−jk (+x cos θr + z sin θr)} ây, (3)

Hi(x, z) =

[
−Er
η0

sin θrâx +
Er
η0

cos θrâz

]
exp {−jk (+x cos θr + z sin θr)} ,

(4)

where Er is the magnitude of the reflected wave. Note that we have not
yet made any assumptions for the reflection coefficient, (1)–(4) are simply
the expressions for the field components for two perpendicularly polarised
TEM waves.

2The other polarisation that is possible is when the electric field is parallel to the
plane of incidence (also called vertical polarisation).

3This is only a function of x and z, as we are assuming a plane wave, and hence the
field is constant in the y direction.
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2.3 Total Fields

As electric and magnetic field are linear, the total field is the superposition
of the incident and reflected, i.e.,

Et = Ei + Er, (5)

Ht = Hi + Hr. (6)

Note that the fields are vectors and have to be added vectorially. On a PEC
boundary, the component of the electric field tangential to the surface must
be zero. In Fig. 1, the PEC boundary is an infinite two-dimensional plane
(lying in the ŷ− ẑ plane at x = 0). The ŷ component of the electric field is
tangential to this surface, and thus

E0 exp {−jkz sin θi}+ Er exp {−jkz sin θr} = 0, (7)

for all z. This thus requires θi = θr = θ and Er ≡ −E0. Substituting (1)
and (3) into (5), yields

Et(x, z) = E0 (exp {jkx cos θ} − exp {−jkx cos θ}) exp {−jkz sin θ} ây (8)

= E02j sin (kx cos θ) exp {−jkz sin θ} ây. (9)

We can write a similar expression for the total magnetic field,

Ht(x, z) =− E0

η0
sin θ 2j sin (kx cos θ) exp {−jkz sin θ} âx

− E0

η0
cos θ 2j cos (kx cos θ) exp {−jkz sin θ} âz. (10)

Consider the total electric field (9):

• In the ẑ direction, the field has the characteristic of a travelling wave,
i.e.,

exp {−jkz sin θ} ≡ exp {−jβz} . (11)

However, as θ → 0 exp {−jkz sin θ} → 1, implying no propagation
(as we would expect for normal incidence). As the field has a magnetic
field component in ẑ, this is not a TEM wave.

• In the x̂ direction, the field has the characteristic of a standing wave,
i.e.,

|Ey| ∝ sin (kx cos θ) , (12)

as depicted in Fig. 2.

Fig. 2 shows that the total electric field goes to zero at distances nd
(for n = 1 . . .) above the PEC surface. At these locations we could place
another PEC plane without any effect on the fields. If d is the distance
between successive minima, then

kd cos θ = π (13)

and hence

d =
π

k cos θ

=
λ

2 cos θ
≥ λ

2
(14)
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Fig. 2: Electric field magnitude above a PEC surface.

2.4 Field Visualisations

Fig. 3(a) shows the real part4 of the incident electric field for a TEM wave
above a PEC ground plane (at x = 0 m). The operating frequency for this
wave is 1.0 GHz and the angle of incidence is θ = 45◦. Similarly, Fig. 3(b)
shows the real part of the reflected wave. Fig. 3(c) shows the resulting total
field formed by the superposition of the incident and reflected waves. In
Fig. 3(c) we can clearly observe the field goes to zero at d = 0.212 m, as
expected from (14).

3 Parallel Plate Transmission Line

Fig. 4 shows a ‘transmission line’ formed by two infinite metal plates. As-
suming propagation in the +ẑ direction, we know a TEM solution would
have

E = E0 exp {−jkz} âx (15)

H =
E0

η0
exp {−jkz} ây. (16)

However, if a ≥ λ

2
, there is another possibility arising, because it is always

possible to find θ such that
λ

2 cos θ
= a and thus obtain reflections from

the walls. This “new” solution has one electric field component Ey and
two magnetic field components, Hx and Hz, i.e., unlike TEM it has a field
component in the direction of propagation. This is a transverse electric
(TE) mode.

On the walls of the parallel plate transmission line the tangential com-

4Essentially this is a ‘snapshot’ of the time-varying field at t = 0.
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Fig. 3: Real part of the electric field for a 1 GHz wave above a PEC ground
plane (at x = 0), with θ = 45◦: (a) incident wave; (b) reflected wave; and
(c) total field.
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Fig. 4: Transmission line formed by two parallel plates separated by distance
a.

ponent of the electric field must go to zero, thus at x = a

sin (ka cos θ) = 0 (17)

this expression is zero when

ka cos θ = π, (18)

leading to

cos θ =
π

ka
(19)

sin θ =
√

1− cos2 θ =

√
1−

( π
ka

)2
. (20)

The fields in the parallel plate transmission line (for the fundamental mode)
are thus

E =E02j sin
(πx
a

)
exp

{
−jkz

√
1−

( π
ka

)2}
ây (21)

H =− E0

η0

√
1−

( π
ka

)2
2j sin

(πx
a

)
exp

{
−jkz

√
1−

( π
ka

)2}
âx

− E0

η0

π

ka
2 cos

(πx
a

)
exp

{
−jkz

√
1−

( π
ka

)2}
âz. (22)

Note:

• Ey and Hx (the transverse components, i.e., orthogonal to the direc-
tion of propagation, ẑ) are in phase, but not with Hz.

• Ey has a sin
(πx
a

)
variation.

• We choose θ to give the first null, we could have chosen others—there
are an infinite number of TE modes that could be supported!

• We could rework the entire analysis for parallel polarisation, leading
to transverse magnetic (TM) modes.
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Fig. 5: Electric fields within a rectangular waveguide with dimensions a×b.

4 Rectangular Waveguide

In the parallel plane transmission line E is orientated in the ŷ direction only.
We could thus put in additional PEC planes at y = 0 and y = b without
altering the fields within the waveguide. Fig. 5 shows the orientation of the
electric field within the waveguide, in particular, we note that the field is
only tangential to the PEC planes at x = 0 and x = a, however, for the
PEC planes at y = 0 and y = b the field is normal (and there is no boundary
condition that needs to be satisfied).

4.1 TE10 Field Components

Based on the expressions for the parallel plate transmission line, the field
components for the fundamental mode (termed the TE10 mode) within a
rectangular waveguide with dimensions5 a× b are

Ey = E0 sin
(πx
a

)
Hx = − E0

ZTE
sin
(πx
a

)
Hz =

jE0π cos
(
πx
a

)
η0ka


· exp

{
−jkz

√
1−

( π
ka

)2}
(23)

where
ZTE =

η0√
1−

(
π
ka

)2 (24)

. Points to note:

• For the wave to propagate the

{
−jkz

√
1−

(
π
ka

)2}
term must be

complex. However, the term in the square root is a function of wave-
length (and thus of the frequency). There are three possible cases:

5By convention a > b.
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(i) ka > π: 1−
(
π
ka

)2
is positive (wave will propagate).

(ii) ka < π: 1−
(
π
ka

)2
is negative (wave is rapidly attenuated, why?).

(iii) ka = π: 1−
(
π
ka

)2
= 0 (this termed the cut-off point).

• E
H is not a constant (as it is for a TEM wave), and varies across the
width of the waveguide. Hence the impedance is not uniquely defined
(and in any case is also going to be a function of the frequency).

4.2 Cutoff

Waveguides have a high-pass characteristic: when the wavelength is larger
than twice the largest dimension (i.e., 2a) the PEC boundary conditions
cannot be satisfied and the wave will not propagate. The derivation for the
cutoff frequency is

1−
( π
ka

)
= 0

λcπ

2πa
= 1

λc = 2a (25)

and since fcλc = v

fc =
v

2a
. (26)

Hence for f > fc, the term exp
{
−jkz

√
·
}

will be complex and the wave

will propagate. While for f < fc the term exp
{
−jkz

√
·
}

, is real, resulting
in rapid attenuation (i.e., the mode is cutoff).

4.3 Higher Order Modes

Waveguides are typically operated so that only one mode dominates (in
most cases this is the fundamental, i.e., TE10). As the frequency increases
higher order modes are possible—the field expressions can be found by
observing that in (17) the boundary condition can also satisfied for

ka cos θ = nπ (27)

where n = 1 . . . Carrying through this analysis leads to the following ex-
pression for the cutoff frequencies of the TEn0 mode

fc =
nv

2a
. (28)

For a typical waveguide we operate in the frequency range above cutoff for
the TE10 mode, but below the TE20 cutoff frequency.
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