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I Performance and capacity of wireless systems are limited by
interference.

I Interfering power levels are heavily influenced by the specific
nature of the environment.

I Propagation in indoor environments is not well understood.
I Complicated by variability in building layout and construction

materials
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The most measured building in the S. Hemisphere!

I Steel-reinforced concrete
construction.

I RF propagation
complicated by a central
services shaft.

I What is the best way to
deploy BSs in this, and
other buildings to
minimize co-channel
interference?
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Propagation Model

I 2D TMz parallel implementation of the FDTD method.

I 2D fields extended to 2.5D by assuming isotropic spreading.

I f = 2.45 GHz (802.11b/g/n WLAN).

I Hard partitions (floors, walls, windows) modelled as lossy
dielectric materials.

I Various BS configurations considered.
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Downlink Carrier-to-Interference Ratio

I Users connect to the BS with the strongest received power.

I Therefore, all other BSs appear as interference.

I Electric fields are spatially averaged over 3λ × 3λ sectors to
remove fading.

I The CIR is thus:

CIR
(x)
i ,j =
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i ,j ∈ x

}

∑

x
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P
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i and j identify the sector and x represents the set of
transmitter locations.
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Downlink DS-CDMA Outage Probability

I Probability that a mobile receiver fails to achieve adequate
reception. For a digital system: BER > 10−3.

I The DS-CDMA outage probability in the presence of n
Rayleigh interfering signals is:

Pn
out = 1 −

n
∏

i=1

Λi

Λi + rp
(2)

where Λi is the mean desired-signal/interfering-signal ratio
Λi = A

Bi
.



BS Deployment: CIR
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BS Deployment: Outage Probability

Vertically aligned:
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BS Deployment

I An increased proportion of sectors have low CIR when BSs are
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I An increased proportion of sectors have low CIR when BSs are
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BS Deployment: Central Services Shaft

I The central services shaft allows RF energy propagate to
adjacent floors with lower loss.



BS Deployment: Central Services Shaft

II The central services shaft allows RF energy propagate to
adjacent floors with lower loss.

Vertically aligned:
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II Measurement study conducted at 1.8 GHz.
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I Detrimental effects of interference are highly localised.

I Can we use metal shielding/FSS to occlude the interfering
mechanisms?
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Interference mitigation

I Shielding can improve the CIR.
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Thank you.

Questions?
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