Modelling Interference for Indoor Wireless Systems Using the FDTD Method

Andrew Austin, Michael Neve and Gerard Rowe

Department of Electrical and Computer Engineering The University of Auckland, New Zealand

June 4, 2009

Outline

Wireless Interference

Propagation Model

System Performance Estimation Carrier-to-Interference Ratio Outage Probability

Base-Station Deployment

Comparison against Experimental Measurements

Interference Mitigation

 Performance and capacity of wireless systems are limited by interference.

- Performance and capacity of wireless systems are limited by interference.
- Interfering power levels are heavily influenced by the specific nature of the environment.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Performance and capacity of wireless systems are limited by interference.
- Interfering power levels are heavily influenced by the specific nature of the environment.
- Propagation in indoor environments is not well understood.

- Performance and capacity of wireless systems are limited by interference.
- Interfering power levels are heavily influenced by the specific nature of the environment.
- Propagation in indoor environments is not well understood.
 - Complicated by variability in building layout and construction materials

The most measured building in the S. Hemisphere!

 Steel-reinforced concrete construction.

▲ロ > ▲母 > ▲臣 > ▲臣 > ▲臣 - の Q @ >

The most measured building in the S. Hemisphere!

- Steel-reinforced concrete construction.
- RF propagation complicated by a central services shaft.

The most measured building in the S. Hemisphere!

- Steel-reinforced concrete construction.
- RF propagation complicated by a central services shaft.
- What is the best way to deploy BSs in this, and other buildings to minimize co-channel interference?

• • • • • • • • • • • •

> 2D TM_z parallel implementation of the FDTD method.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

- > 2D TM_z parallel implementation of the FDTD method.
- ▶ 2D fields extended to 2.5D by assuming isotropic spreading.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- 2D TM_z parallel implementation of the FDTD method.
- 2D fields extended to 2.5D by assuming isotropic spreading.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• f = 2.45 GHz (802.11b/g/n WLAN).

- > 2D TM_z parallel implementation of the FDTD method.
- ▶ 2D fields extended to 2.5D by assuming isotropic spreading.
- ► f = 2.45 GHz (802.11b/g/n WLAN).
- Hard partitions (floors, walls, windows) modelled as lossy dielectric materials.

- > 2D TM_z parallel implementation of the FDTD method.
- ▶ 2D fields extended to 2.5D by assuming isotropic spreading.
- ▶ f = 2.45 GHz (802.11b/g/n WLAN).
- Hard partitions (floors, walls, windows) modelled as lossy dielectric materials.

Various BS configurations considered.

▶ Users connect to the BS with the strongest received power.

► Users connect to the BS with the strongest received power.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

► Therefore, all other BSs appear as interference.

- ► Users connect to the BS with the strongest received power.
- ► Therefore, all other BSs appear as interference.
- Electric fields are spatially averaged over 3λ × 3λ sectors to remove fading.

- Users connect to the BS with the strongest received power.
- ► Therefore, all other BSs appear as interference.
- Electric fields are spatially averaged over 3λ × 3λ sectors to remove fading.
- The CIR is thus:

$$\mathsf{CIR}_{i,j}^{(x)} = \frac{\max\left\{P_{i,j}^{(x)} \in x\right\}}{\sum_{x} P_{i,j}^{(x)} - \max\left\{P_{i,j}^{(x)} \in x\right\}}$$
(1)

i and j identify the sector and x represents the set of transmitter locations.

Downlink DS-CDMA Outage Probability

Probability that a mobile receiver fails to achieve adequate reception. For a digital system: BER > 10⁻³.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Downlink DS-CDMA Outage Probability

- Probability that a mobile receiver fails to achieve adequate reception. For a digital system: BER > 10⁻³.
- The DS-CDMA outage probability in the presence of n Rayleigh interfering signals is:

$$P_{out}^n = 1 - \prod_{i=1}^n \frac{\Lambda_i}{\Lambda_i + r_p}$$
(2)

where Λ_i is the mean desired-signal/interfering-signal ratio $\Lambda_i = \frac{A}{B_i}$.

BS Deployment: CIR

Vertically aligned:

Vertically staggered:

BS Deployment: Outage Probability

Vertically aligned:

Vertically staggered:

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで、

BS Deployment

 An increased proportion of sectors have low CIR when BSs are staggered.

BS Deployment

 An increased proportion of sectors have low CIR when BSs are staggered.

BS Deployment: Central Services Shaft

The central services shaft allows RF energy propagate to adjacent floors with lower loss.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

BS Deployment: Central Services Shaft

 The central services shaft allows RF energy propagate to adjacent floors with lower loss.
Vertically aligned: Vertically staggered:

Comparison against measurements

▶ Measurement study conducted at 1.8 GHz.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Comparison against measurements

- Measurement study conducted at 1.8 GHz.
- BSs located on adjacent floors and measurements made at 52 locations across the 8th floor.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Comparison against measurements

- Measurement study conducted at 1.8 GHz.
- BSs located on adjacent floors and measurements made at 52 locations across the 8th floor.

Possible methods to mitigate interference

> Detrimental effects of interference are highly localised.

・ロト・4回ト・ミミト・ミー・シック

Possible methods to mitigate interference

- > Detrimental effects of interference are highly localised.
- Can we use metal shielding/FSS to occlude the interfering mechanisms?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Possible methods to mitigate interference

- Detrimental effects of interference are highly localised.
- Can we use metal shielding/FSS to occlude the interfering mechanisms?

Interference mitigation

Shielding can improve the CIR.

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

Thank you.

Questions?

