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Motivations

◮ Considerable attention has been focused on the potential
interference from UWB to existing systems. This research
focuses on the UWB-UWB interference problem.

◮ Previous research has shown that the channel can significantly
impact UWB system performance.

◮ i.e. UWB systems are sensitive to the channel characteristics
(in particular temporal characteristics).

◮ Analytical models for the system performance (e.g. BER)
assume an generalised or statistical channel.

◮ Analysis of the UWB channel with time-domain methods can
yield useful information, e.g. [Zhao ‘07, Alighanbari ‘08].

◮ Goal here: use the FDTD to model the channel and use the
results to predict UWB system performance.
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◮ A number of reported studies, but generally two “functional
descriptions”:

◮ Clustered Exponential Decay [Saleh-Valenzuela]:

P(τ) = c
∑

L

|ξL|
2
∑

k

|βk,L|2 δ(τ − TL − τk,L)

where terms in L are related to the clusters and terms in k are
related to the components within a cluster.

◮ Exponential Decay [e.g. Ghassemzadeh et. al. 2005]:

P(τ) =

{

c τ = 0
cr exp (−τ

ǫ
) 0 < τ ≤ 5ǫ

where r is the power ratio and ǫ the decay rate.



Power Delay Profile Modelling
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Exponetial Decay Model

Clustered Expoential Decay Model

◮ To what extent does the local environment affect the PDP?
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Two-dimensional Office Environment

◮ 4th order Gaussian Monocycle pulse, width = 0.5 ns
(compliant with FCC-UWB mask).

◮ Indoor geometry contains dielectric and metallic structures.
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“Cluttered” Indoor Environment

◮ Typical indoor environments usually contain varying degrees of
randomly positioned and sized dielectric and metallic
“clutter”.
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◮ Typical indoor environments usually contain varying degrees of
randomly positioned and sized dielectric and metallic
“clutter”.

◮ In a 2D FDTD simulation we include 75 small PEC blocks.
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Two-dimensional Office Environment
2D TMz polarized lattice, ∆ = 1 mm

◮ Extract the PDP at each 0.20 m×0.20 m sector by temporally
aligning and spatially averaging over 100 points.
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◮ Extract the PDP at each 0.20 m×0.20 m sector by temporally
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◮ PDP at sector 1:
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Two-dimensional Office Environment
2D TMz polarized lattice, ∆ = 1 mm

◮ PDP at sector 7:
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Multi-user Time-Hopping System [Win & Scholtz 2000]

◮ Pulse position modulation is used to transmit a user’s data.

◮ Each frame is divided in Nh chips and users are separated with
time-hopping codes.

T
frame

.  .  .

T
chip

◮ At the receiver, frame-level synchronization is assumed:
◮ Data is recovered by correlating the received signal against the

pulse over the appropriate chip.
◮ Neighbouring UWB systems can introduce interference.
◮ Impact depends on the impulse response.



Modelling UWB-UWB interference

◮ For a typical indoor environment the pulse has usually decayed
within Tframe = 50 ns.
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◮ For a typical indoor environment the pulse has usually decayed
within Tframe = 50 ns.

0 5 10 15 20 25 30 35 40 45 50

−0.05

0

0.05

Time (ns)

E
z (

v
/m

)

AP
1

0 5 10 15 20 25 30 35 40 45 50

−0.05

0

0.05

Time (ns)

E
z (

v
/m

)

AP
2

◮ However, neighbouring systems are not synchronized.
◮ The relative time difference is assumed to be random and

uniformly distributed.



Bit-Error-Rate Coverage Maps: Noise Only
2D TMz polarization; SNR= 12 dB; 8 users/AP.
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Bit-Error-Rate Coverage Maps: Interference
2D TMz polarization; SNR= 12 dB; 8 users/AP.
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Bit-Error-Rate Coverage Maps: Interference
2D TMz polarization; SNR= 12 dB; 8 users/AP.
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Impact of Clutter
2D TMz polarization; SNR= 12 dB; 8 users/AP.
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Summary

◮ Local clutter in the environment may influence the channel
impulse response (single- vs. clustered-exponential).

◮ A measure of the UWB-UWB interference (in terms of the
BER) can be predicted using FDTD simulations of the indoor
channel.

◮ Dependent on the (specific) temporal characteristics.
◮ Clutter in the environment can significantly increase the local

BER.



Thank you.
Questions?


	Motivations
	Models for the Indoor UWB Power Delay Profile
	FDTD Channel Model
	Power Delay Profiles
	Impact of Local Clutter

	Interference Analysis for a TH-UWB System
	Summary

