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Abstract—Randomness in the input parameters of a ray-
tracing simulator introduces uncertainty in the predictions of
the received power and voltage. The polynomial chaos method
is applied to efficiently estimate the uncertainty arising from
randomness in the material properties for a site-specific ray-
tracing analysis of an indoor hallway. The uncertainty is com-
pared against a converged set of Monte-Carlo simulations and
with experimental measurements of the sector-averaged received
power. Results indicate a 2–3 dB variation in the received power
can exist for relatively small material parameter uncertainties.

Index Terms—Ray-Tracing, Uncertainty, Propagation

I. INTRODUCTION

Ray-tracing is widely used to estimate characteristics of
indoor and outdoor wireless channels by modelling radio wave
propagation using ray-optical approximations [1], [2]. The
power and field distributions within complex and detailed
environments can found by considering the interactions (e.g.
reflection and diffraction) of the rays with each surface or edge
in the environmental model [3, pp. 217–251]. Similar to other
deterministic methods used to estimate the wireless channel,
the accuracy of the ray-tracing predictions when compared
to experimental measurements depends on the level of detail
included in the environmental model. However, considerable
uncertainty can exist in the description of the environment.
For example, dimensions on plans and technical drawings are
typically specified to be within a certain tolerance. Similarly,
material properties such as the dielectric constant and conduc-
tivity often vary between samples due to different composition
or other effects (e.g. atmospheric moisture content) [4].

The uncertainty in the dimensions and material properties
can be expressed as random variables, with the actual dimen-
sions and dielectric properties viewed as a particular realiza-
tion [5, pp. 1–3]. Other uncertainties, such as randomness
in the antenna radiation patterns and random measurement
errors can be similarly included. These uncertainties in the
inputs will ‘propagate’ through the ray-tracing algorithm to
introduce uncertainties and randomness in the results. The
size of the output uncertainty will depend how the input
uncertainties interact with the ray-tracing model. It should be
noted that a single simulation run at the nominal input values
(or otherwise) will not provide a measure of the uncertainty
in the output, which can only typically be gained by collating
multiple results.

Characterizing the uncertainty in the outputs gives an in-
dication of the range of values that are expected, and can

give a measure of confidence in the ray-tracing results [6].
Using the results from the uncertainty analysis we can also
determine the sensitivity of the model to the various input
parameters, and thereby determine which inputs contribute
most toward the outputs. This information can be used to
help refine the description of the problem, potentially reducing
the output uncertainty when compared against experimental
measurements [6]. Previous application of ray-tracing analysis
to model indoor and urban propagation has shown considerable
variability can exist in the results—e.g field strengths and
received power—depending in the input parameters, such as
the geometrical detail, dimensions and material properties [7].
This paper shows how the variability in the ray-tracer pre-
dictions (given the statistics of the input parameters) can
be efficiently estimated using a surrogate model based on
polynomial chaos expansions.

II. METHODS TO ESTIMATE UNCERTAINTY

A. Monte Carlo Method

The Monte Carlo method is widely used to estimate statis-
tics and quantify uncertainty in numerical models: a large
number of random inputs are generated from the probabil-
ity distributions of the input parameters, and the model is
solved/simulated for each realization. The statistics and uncer-
tainty are then estimated by collating the random solutions.
The Monte Carlo method is relatively easy to apply and
is used in commercial ray-tracing packages, e.g. Wireless
InSite [8]. However, the slow convergence rate of the Monte
Carlo method tends to limit its application to computationally
large problems [9].

B. Polynomial Chaos Method

As shown in Fig. 1, the polynomial chaos method is used
to construct a surrogate model for the ray-tracer results, R, in
terms of the system inputs. In particular, R′ is approximated
by finite summation of weighted orthogonal polynomial ba-
sis functions in the input parameter space. The polynomial
chaos method converges significantly faster than the Monte
Carlo method and generally requires fewer runs of the full
model to construct the surrogate model. Similar to the Monte
Carlo method, the polynomial chaos expansion and resulting
surrogate model is specific to the problem and geometry
under investigation. Statistics computed from the surrogate
model will be a good approximation to the statistics of the
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Fig. 1. The polynomial chaos expansion is used to derive the surrogate model
for the ray-tracer. A small number of full model simulations are required to
form the expansion. Uncertainty in R′ can be computed directly from the
expansion coefficients.

full system. Furthermore, the surrogate model can be rapidly
evaluated for any combination of input parameters as it only
contains polynomial terms.

The polynomial chaos expansion for N random inputs ξ =
{ξ1, . . . ξN} is given by

R(ξ) ≈ R′(ξ) =
P
∑

j=0

ajΨj(ξ) (1)

where aj is the weighting coefficient for the multivariate
polynomial chaos basis Ψj(·) [10, pp. 57–67]. The number

of terms P is given by (N+D)!
N !D! , where D is the highest

polynomial order. It can be shown that the optimal polynomial
basis, Ψ(ξ), depends on the probability distribution of the
random variables, ξ [9]. For example, Hermite polynomials are
associated with Gaussian variates and Legendre polynomials
with Uniform variates.

The weighting coefficients for the surrogate model can be
found by projection

aj =
⟨R(ξ),Ψj(ξ)⟩

〈

Ψ2
j(ξ)

〉

=
1

〈

Ψ2
j(ξ)

〉

∫

ΩN

R(ξ)Ψj(ξ) dξ (2)

where the integration is over the N -dimensional input param-
eter space, ΩN . The multi-dimensional integral in (2) can be
evaluated using numerical quadrature, e.g.

∫

ΩN

R(ξ)Ψj(ξ) dξ ≈
∑

q

R
(

ξ{q}
)

Ψj

(

ξ{q}
)

w{q} (3)

where ξ{q} and w{q} are the quadrature points and weights
respectively. Thus to construct the surrogate model, the full
model (i.e. the ray-tracer) needs to be evaluated for a set of
{q} input parameters, corresponding to the quadrature points
in (3). Sparse grid integration techniques, such as the Smolyak
algorithm [11], and nested quadrature rules (e.g. Kronrod-
Patterson) are used to reduce the number of quadrature points
required [12].

Fig. 2. Depiction of the indoor hallway considered in this analysis. The
permittivity of the side walls, floor and ceiling are assumed to be independent
and follow Gaussian distributions. To eliminate multi-path fading, the received
power is averaged over 49 points in the vicinity each of the 18 receiver
locations identified. Further research will investigate the impact of other
environmental details indicated in red.

III. APPLICATION TO RAY-TRACING

The polynomial chaos method outlined in the previous
section is applied to an image-based ray-tracing analysis [2]
of an indoor hallway at 2.28 GHz shown in Fig. 2. Red
shaded objects in the environment were excluded from this
analysis but will be included in further research. The ray-
tracing results are compared against a site-survey of the
channel: the transmitter is located at point ×, and to remove
the effects of multi-path fading, the received signal at each
of the 18 receiver locations is averaged over a grid of 49
points using a linear x–y translator. The transmitting antenna
is a quarter-wavelength monopole above a ground plane, while
at the receiver end of the system a high efficiency meta-
material antenna is used [13]. The three dimensional radiation
patterns of both antennas were embedded in the ray-tracer.
For this analysis, the maximum number of ray interactions
was restricted to six, which provided an acceptable trade-off
between accuracy and speed.

The walls of the hallway are constructed from drywall,
while the floor and ceiling are formed from reinforced con-
crete. The surfaces are assumed to be electrically smooth and
are parameterized in the ray-tracer by their permittivity and
conductivity. For this uncertainty analysis the permittivity of
the drywall is assumed to follow a Gaussian distribution, with
mean 3.0 and standard deviation 0.5; while the permittivity
of the floor and ceiling are assumed to follow Gaussian
distributions with mean 6.0 and standard deviation 1.0. The
permittivity of the walls, floor and ceiling are further assumed
to be statistically independent. Previous analysis [6] has shown
conductivity does not have a significant effect for strongly
reflected signals, thus for this analysis the conductivity for all
materials is assumed to be 1 mS/m.

Fig. 3 shows the 90% confidence interval (CI) for the sector-
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Fig. 3. Uncertainty in the sector-averaged received power (in dB units)
due to randomness in the permittivity. While good agreement is observed
between the Polynomial Chaos and Monte-Carlo results, the deviation from
the experimental measurements suggests a more detailed environmental model
is needed.

averaged received power computed at each of the 18 sectors
given the uncertainties in the material properties. The 90%
CI gives a measure of the expected range about the predicted
mean. For most sectors, uncertainty in the material properties
introduces 2–3 dB variation about the mean sector-averaged
power. The polynomial chaos surrogate model (truncated at
D = 2) is constructed from 19 runs of the full ray-tracing
simulator, by contrast 2000 Monte Carlo simulations were
required—this represents an approximately 100-fold decrease
in the computational requirements. Many experimental mea-
surement points are observed to fall outside the 90% con-
fidence interval of the simulated results. This suggests the
differences between the ray-tracer and measurements cannot
be entirely attributed to uncertainty in the material parameters.
A refined geometrical model incorporating further features
of the environment, such as concrete pillars and alcoves is
currently under consideration to improve the accuracy of the
ray-tracer.

Fig. 4 shows probability density functions (PDFs) of the
sector-averaged power in dB units for sectors 7 and 10
computed using 2000 Monte-Carlo trials and polynomial chaos
expansions truncated at D = 2. For both sectors, statistics
(mean and standard deviation) computed using the polynomial
chaos results compare well with the Monte-Carlo simulations,
and similar observations can be made for the other sectors.

IV. SUMMARY

Deterministic methods used to model the radio channel,
such as ray-tracing, require a detailed description of the
problem geometry that includes all relevant dimensions and
materials (with the associated dielectric properties). Inherent
randomness in the description of the environment introduces
uncertainty in ray-tracing predictions of the radio channel.
Results from the ray-tracing analysis of a hallway environ-
ment show the received power can vary significantly due to
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Fig. 4. Estimated probability density functions of the sector-averaged power
(in dB units) for sectors 7 and 10.

uncertainties in the material properties. Efficiently quantifying
these uncertainties is important to assess the sensitivity of
the predictions and can give a measure of confidence in the
simulated results. Polynomial chaos based surrogate modelling
allows the statistics and uncertainty to be examined at sig-
nificantly lower computational cost than competing methods.
Further analysis of the uncertainty due to position are currently
being examined.
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