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Abstract—An FDTD-based model is developed to analyze three
dimensional microwave circuits with uncertain parameters, such
as variability and tolerances in the physical dimensions intro-
duced by manufacturing processes. The proposed method uses
generalized polynomial chaos to expand the time-domain electric
and magnetic fields in terms of orthogonal polynomial basis
functions of the uncertain variables. The technique is validated by
modelling a low pass microstrip filter with uncertain stub lengths.
The computed S-parameters are compared against Monte Carlo
simulations, and good agreement is found for the statistics over 0–
20 GHz. A considerable computational advantage over the Monte
Carlo method is also achieved.

Index Terms—Uncertainty, Finite difference methods, Monte
Carlo methods.

I. INTRODUCTION

Computational electromagnetic tools, such as the finite-
difference time-domain (FDTD) method, are widely used to
design microwave circuits. However, uncertainties introduced
in the manufacturing processes are difficult to capture using
existing computational methods [1]. For example, manufac-
turing tolerances introduce uncertainty in the physical di-
mensions, which ‘propagates’ through the circuit to induce
uncertainty in the response. Characterizing the randomness
in the circuit response is an essential step in the design and
validation process to estimate the sensitivity of the predictions
and for setting realistic design margins [2].

The Monte Carlo method is widely used to quantify the
impacts of uncertainty and randomness in numerical models,
and has been demonstrated to provide accurate results for
electromagnetic problems [3]. However, statistics computed
via the Monte Carlo method generally converge slowly, and
this tends to limit its application for computationally large or
complex problems. Other methods, such as perturbation with
truncated series expansions can also be used for sensitivity
and uncertainty analysis. However, perturbation is usually only
valid for small changes in the input parameters [4].

Recently, methods based on generalized polynomial chaos
have been proposed to more efficiently quantify large-scale
uncertainty in numerical models [4]. The polynomial chaos
method approximates quantities in a stochastic process as the
finite summation of orthogonal basis polynomials in the ran-
dom input parameter space [4]. While the computational costs
are increased, relative to the non-stochastic case, polynomial
chaos techniques converge significantly faster than the Monte
Carlo method, and can provide estimates for the uncertainties
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Fig. 1. Microstrip implementation of a low pass filter with uncertain dimen-
sions: d1 = 5.69±0.5 mm; d2 = 5.69±0.5 mm; and d3 = 4.064±1.0 mm.
Other dimensions are assumed to remain constant.

and sensitivities from a single simulation run. Previous ap-
plications of polynomial chaos for microwave circuits have
not focused on full-wave simulation methods—these have
examined the effects of statistical variability in the per-unit-
length parameters for single- and multi-conductor transmission
lines using the telegrapher’s equations [2]. Meanwhile, FDTD-
based implementations of the polynomial chaos method have
largely focused on the analysis of loaded resonant cavities and
free-space scattering problems [5].

The results presented in this paper demonstrate the flex-
ibility and strength of the polynomial chaos method, when
combined with full-wave computational electromagnetic tech-
niques, to characterize the effects of parameter uncertainty in
practical microwave circuits. Also considered is the concur-
rent estimation of the parameter sensitivities via the Sobol
decomposition [6]. Furthermore, polynomial chaos provides a
mathematical framework for potentially incorporating multi-
resolution analysis in the uncertain parameter space using
expansions in other orthogonal bases, such as wavelets.

II. UNCERTAINTY IN THE FDTD ANALYSIS

Fig. 1 shows a microstrip implementation of a 5.6 GHz
low pass filter, with three uncertain dimensions identified,
{d1, d2, d3}. These uncertainties can be expressed as random
variables, with the actual dimensions viewed as a partic-
ular realization [4]. It is assumed the random dimensions
are statistically independent and follow uniform probability
distributions. In this analysis, the random dimensions are
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incorporated into the FDTD method by introducing uncertainty
in the cell spacing of the rectilinear Yee lattice. For example,
the uncertainty in the ∆x lattice spacing, due to stub length
d1, can be expressed by

∆x(ξ1) =
∆xmax +∆xmin

2
+

∆xmax −∆xmin

2
ξ1, (1)

where ξ1 is a uniformly distributed random variable over the
interval −1 ≤ ξ1 ≤ 1, and ∆xmin and ∆xmax represent the
minimum and maximum values of the lattice spacing required
to achieve the desired uncertainty in d1. The uncertainty in the
lattice spacing is distributed over a region to reduce spurious
numerical reflections from the interface. Similarly, to ensure
numerical stability the time-step is reduced to account for the
smallest possible cell dimension.

A. The Polynomial Chaos Expansion

Uncertainty in the computational lattice dimensions will
introduce uncertainty in the time-domain electric and mag-
netic fields throughout the problem space. The polynomial
chaos method expands these uncertain fields as a truncated
summation of orthogonal polynomial basis functions, Ψl, in
the N random variables, ξ = {ξ1, . . . ξN} [5]. For example,
the Ez field component can be written
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The number of terms is given by P + 1 = (N+D)!
N !D! , where

D is the highest polynomial order in the expansion. For the
uniformly distributed stub lengths considered in this paper,
basis functions from the set of Legendre polynomials are used.
Other orthogonal basis functions, such as wavelets, could also
be applied to more efficiently span the random parameter
space. The Legendre basis functions are orthogonal over an
Ω = [−1, 1]N probability space, with an inner product given
by

⟨ΨlΨm⟩ =

∫
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δl,m. (3)

Similar expressions to (2) can be formulated for the remaining
electric and magnetic field components and substituted into
the FDTD update equations along with (1). The Ez update
equation can be expressed
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Applying a Galerkin procedure by taking inner products with
the test function Ψm(ξ), where m = 0, . . . P , and using the

orthogonality condition from (3), reduces (4) to
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The inner products in (5) are precomputed using numerical
quadrature and stored in memory before time-stepping com-
mences. Where there is no uncertainty in the cell dimensions
the inner products reduce to Kronecker delta functions, and
the m = 0, . . . P update equations are decoupled. The FDTD
computational lattice is terminated in a 10-cell thick perfectly
matched layer (PML); these regions are free of parameter
uncertainty, and the PML can be applied to each m = 0, . . . P
field component separately.

The global sensitivity of the circuit response to each stub
length can be estimated using the Sobol decomposition of the
polynomial chaos expansion. This yields a set of conditional
variances, indicating the relative contribution each combina-
tion of input parameters makes toward the uncertainty in the
response. The Sobol indices for the set of inputs u are given
by
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where Ku is an index to the terms in (2) that contain u [6].

III. NUMERICAL RESULTS

The FDTD computational lattice for the microstrip filter
depicted in Fig. 1 is 130 × 100 × 36 cells in size (including
the PML), and the nominal cell dimensions are: ∆x =
0.4064 mm; ∆y = 0.4233 mm and ∆z = 0.265 mm [7].
The filter is excited at port 1 using a modulated Gaussian pulse
with a 10 GHz centre frequency and solved to 4000 time steps.
The Monte Carlo method is applied by generating a set of
1000 uniformly distributed random dimensions, appropriately
scaling the lattice spacing, and solving each realization of
the circuit independently. Changes to the stub lengths alters
the frequency-domain response of the filter, including the
magnitude of the ripple in the pass- and stop-bands and the
roll-off. Fig. 2(a) shows the mean S21 magnitude computed
using Monte Carlo simulations and the FDTD polynomial
chaos formulation outlined in section II-A. The corresponding
standard deviation about the mean values is shown in Fig. 2(b).
The standard deviation is observed to increase in the roll-off
regions of the filter response, indicating an increased degree
of uncertainty exists in the results at these points.

The polynomial chaos expansion is truncated at order
D = {1, 2, 3}, and the uncertainty in the time-domain emz field
components (recorded at ports 1 and 2) is projected into the
frequency-domain to determine the S-parameter statistics. As
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Fig. 2. Comparison of the (a) Mean and (b) Standard deviation in the
magnitude of filter S21 computed using 1000 Monte Carlo trials and via
polynomial chaos expansions.

shown in Fig. 2(a) and (b), the mean and standard deviation are
well predicted, and the convergence against the Monte Carlo
results improves with increasing D. At higher frequencies the
change in the electrical lengths of the stubs is larger, causing
increased uncertainty, which requires higher order polynomial
terms to converge.

Fig. 3(a) shows PDFs of the 3-dB filter roll-off frequency
estimated from 1000 Monte Carlo trials and via the polynomial
chaos expansions. Accurate models for the expected spread
are important to assess the sensitivity of the predictions, and
can provide a measure of confidence in simulated results.
Increasing the order of the expansion improves the shape of
the distribution, though further Monte Carlo trials would be
required to improve accuracy in the tails. Fig. 3(b) shows the
relative contribution of each stub length to the uncertainty
in |S21| computed via (6). The uncertainty in the pass band
ripple is dominated by d3, the stub separation; whereas in the
transition regions and the stop band, the lengths of the stubs
have greater impact. This analysis is valuable as it indicates
which parameters should be targeted to have the greatest
reduction in the variability of the response.

The simulation time for each Monte Carlo trial is approx-
imately 4 minutes (on a 3.3 GHz Intel i3 processor); 1000
trials thus takes 2.5 days. By comparison, the polynomial
chaos method requires approximately 8, 23 and 58 minutes
for D = 1–3 respectively. However, the overall memory
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Fig. 3. (a) Probability density functions of the low pass filter 3-dB roll-
off point computed using 1000 Monte Carlo trials and via polynomial chaos
expansions. (b) Relative contribution of each stub length to the uncertainty in
|S21| computed using the D = 3 expansion.

consumption is increased by factor P +1, which may limit its
application for electrically large problem geometries.

IV. CONCLUSIONS

Randomness in the physical dimensions of microwave cir-
cuits, e.g. manufacturing tolerances, introduces uncertainty in
the response. Characterizing this uncertainty using numerical
simulation tools is advantageous, but often requires excessive
computational resources. The model developed in this paper
uses polynomial chaos to introduce uncertainty in the 3D
FDTD method. The method is applied to determine the effects
of uncertainty in the dimensions of a microstrip filter. The
statistics of the solution agree closely with Monte Carlo results
and are achieved at significantly lower computational cost.
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