WE4D-1

Efficient Analysis of Parameter Uncertainty in FDTD Models of Microwave Circuits using Polynomial Chaos

A. Austin and C. Sarris University of Toronto, Toronto, Canada

International Microwave Symposium IEEE 2-7 June 2013, Seattle, WA MTT-S

Motivations

- Modeling Uncertainty in the FDTD – Polynomial Chaos Expansion
 - Uncertainty in dimensions and geometry
- Application and Validation

• Summary

- We often do not have complete knowledge of the inputs: randomness / uncertainties exist...
- Uncertainties 'propagate' through the system
- Goal: estimate the uncertainty in the outputs

Polynomial Chaos Expansion

 Possible to expand a 2nd order random process in an orthogonal basis¹

$$U(\mathbf{x},t;\boldsymbol{\xi}) pprox \sum_{a=0}^{P} u_a(\mathbf{x},t) \Psi_a(\boldsymbol{\xi})$$

• $\boldsymbol{\xi} = \{\xi_1, \xi_2, \dots, \xi_N\}$ are the N random inputs and Ψ_a are the polynomial chaos basis functions

• $P+1 = \frac{(N+D)!}{N!D!}$ D is the highest polynomial order

¹D. Xiu and Karniadakis, SIAM J. Sci. Comput., **24**(2) 2002

Polynomial Chaos Expansion

- Basic idea: expand the system's governing equations using PC basis functions
 - Larger, coupled system: harder to solve !
- Advantages: rigorous theory, all statistics can be computed from one simulation
- Previously applied to some CEM problems
 - Material properties (FDTD)^{1,2}
 - Coupling to transmission lines³
 - ¹R. Edwards *et al.,* IEEE Trans. EMC-52(1), pp. 155-163, 2010
 - ²C. Chauviere *et al.*, SIAM J. Sci. Compat. 28(2) pp. 751-775, 2006
 - ³P. Manfredi and F. Canavero, IEEE Trans. EMC-54(3) pp. 677-680, 2012

Uncertain Geometry & Dimensions

- Important for analyzing fabrication tolerances
 - Need to model uncertainty in metal/PEC (previous approaches cannot)

 Incorporate randomness in the geometry by introducing uncertainty in the FDTD computational mesh

Apply the PCE to expand the field components

$$E^{1}(i, j, k, n, \boldsymbol{\xi}) = \sum_{a=0}^{P} {}_{a}e^{1} \big|_{i, j, k}^{n} \Psi_{a}(\boldsymbol{\xi})$$

• Substitute into curvilinear FDTD update eqns:

$$\sum_{a=0}^{P} ae^{1}\Big|_{i,j,k}^{n+1}\Psi_{a}\left(\boldsymbol{\xi}\right) = \frac{2\epsilon_{0}\epsilon_{r} - \sigma\Delta t}{2\epsilon_{0}\epsilon_{r} + \sigma\Delta t}\sum_{a=0}^{P}\left(\boldsymbol{\xi}\right)\Big|_{i,j,k} ae^{1}\Big|_{i,j,k}^{n}\Psi_{a}\left(\boldsymbol{\xi}\right) + \frac{2\Delta t}{2\epsilon_{0}\epsilon_{r} + \sigma\Delta t}\left[\sum_{\substack{i=0\\i,j,k}}^{P}\left(ah_{3}\Big|_{i,j,k}^{n+\frac{1}{2}} - ah_{3}\Big|_{i,j-1,k}^{n+\frac{1}{2}}\right)\Psi_{a}\left(\boldsymbol{\xi}\right) + \frac{2\Delta t}{2\epsilon_{0}\epsilon_{r} + \sigma\Delta t}\left[\sum_{\substack{i=0\\i,j,k}}^{P}\left(ah_{2}\Big|_{i,j,k}^{n+\frac{1}{2}} - ah_{2}\Big|_{i,j,k-1}^{n+\frac{1}{2}}\right)\Psi_{a}\left(\boldsymbol{\xi}\right)\right]$$

Apply a Galerkin procedure with a test function Ψ_b(ξ), b = 0,...P

$${}_{b}e^{1}\big|_{i,j,k}^{n+1} = \frac{2\epsilon_{0}\epsilon_{r} - \sigma\Delta t}{2\epsilon_{0}\epsilon_{r} + \sigma\Delta t} {}_{b}e^{1}\big|_{i,j,k}^{n} + \frac{2\Delta t}{2\epsilon_{0}\epsilon_{r} + \sigma\Delta t}$$

$$\cdot \frac{1}{\langle \Psi_{b}^{2} \rangle} \sum_{a=0}^{P} \left({}_{a}h_{3}\big|_{i,j,k}^{n+\frac{1}{2}} - {}_{a}h_{3}\big|_{i,j-1,k}^{n+\frac{1}{2}} - {}_{a}h_{2}\big|_{i,j,k}^{n+\frac{1}{2}} \right)$$

$$+ {}_{a}h_{2}\big|_{i,j,k-1}^{n+\frac{1}{2}} \left(\frac{1}{V(\boldsymbol{\xi})} \Big|_{i,j,k}^{E^{1}} \Psi_{a}\left(\boldsymbol{\xi}\right)\Psi_{b}\left(\boldsymbol{\xi}\right) \right).$$

Inner products can be precomputed using numerical quadrature

Need to project contravariant fields:
 g-metrics are uncertain

• Uncertainty in stubs \rightarrow randomness in S₂₁

Mean is well predicted over 0–20 GHz

Uncertainty increases in the transition regions

Lowpass Filter: Sensitivity Analysis

 Partial variances from PCE to estimate the contribution each parameter makes toward S₂₁

Convergence to MC as we increase order

- Aligned geometry: curvilinear mesh PCE-FDTD
- Uncertainties: L ~ β (μ = 12.5 mm, σ = 0.17 mm)

Uncertainty increases in the roll-off

• Uncertainty accumulates as we cascade more elements: higher orders needed to converge

• Curvilinear mesh to introduce uncertainty in separation and orientation between the lines

• Uncertainty in coupling and isolation predicted by the PCE compare well with MC results

Relative Computational Costs

- A large number of Monte Carlo trials must be run to ensure convergence

 1000 trials used: multiple days
- # of PCE terms grow rapidly: $P+1 = \frac{(N+D)!}{N!D!}$

	Monte Carlo (each trial)	Order, D	PCE-FDTD Time	\times RAM
Microstrip Filter, $N = 3$	4 mins	3	58 mins	$\times 20$
Cascaded Filter, $N = 4$	25 mins	4	12 hours	$\times 70$
Directional Coupler, $N = 2$	11 mins	4	4.5 hours	$\times 15$

- Novel method to characterize geometrical uncertainties in the FDTD method
- Polynomial Chaos used to expand uncertainty fields in terms of the mesh distortion
- Applied to several microwave circuits: good agreement with Monte Carlo at significantly lower computational cost

 Relate basis functions to the PDFs of the inputs: optimal convergence¹

Random Variable, ξ	Weiner-Askey Polynomial, Ψ	Support
Gaussian	Hermite	$[-\infty,\infty]$
Uniform	Legendre	[<i>a</i> , <i>b</i>]
Beta	Jacobi	[<i>a</i> , <i>b</i>]
Gamma	Laguerre	$[0,\infty]$

¹D. Xiu and Karniadakis, SIAM J. Sci. Comput., **24**(2) 2002

Random Curvilinear Mesh

• Randomness in the mesh parameters introduces uncertainty in the time-domain EM fields

Estimating Statistics from the PCE

Outputs are expressed as an expansion in the PC basis:

$$R(\boldsymbol{\xi}) = \sum_{a=0}^{r} r_a \Psi_a(\boldsymbol{\xi})$$

• Can be shown: $\mu[R(\xi)] = r_0$

$$\sigma^{2}\left[R(\boldsymbol{\xi})\right] = \sum_{a=1}^{P} r_{a}^{2} \left\langle \Psi_{a}^{2} \right\rangle$$

 Relative sensitivities estimated by considering partial variances¹

¹T. Crestaux et al. Reliab. Eng. Syst. Safe., 94(7) pp. 1161-1172, 2009