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Motivations 

•  We often do not have complete knowledge of 
the inputs: randomness / uncertainties exist… 

•  Uncertainties ‘propagate’ through the system 
•  Goal: estimate the uncertainty in the outputs 

Motivations for Uncertainty Quantification

System of PDE’s

of Physical Reality)
(Our Mathematical Model

Boundary Conditions

Geometry

Initial Conditions

Materials

Other physical parameters

Outputs of Interest

Response

! We do not have complete knowledge of the inputs—often can
only be described probabilistically.

! Uncertainties ‘propagate’ through the system.

! Analysing one realisation does not account for uncertainties.

! Goal is to characterise the uncertainty in the outputs (related
problem: how sensitive are our solutions?)
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•  Possible to expand a 2nd order random process 
in an orthogonal basis1 

 
 
•                            are the N random inputs and           
   are the polynomial chaos basis functions 
 
•                           D is the highest polynomial order  
 

Polynomial Chaos Expansion 

2

In [18] uncertainty was introduced by altering the rectilinear
cell spacing of the Yee lattice; in this paper we extend the
formulation to model arbitrary geometrical uncertainties using
a generalized curvilinear computational mesh. The system
of update equation is stable and can accurately characterize
uncertain PEC geometries, making the efficient FDTD analysis
of manufacturing tolerances in microwave circuits possible. A
brief overview of the polynomial chaos expansion (PCE) is
presented in section II; the new system of update equations
is also derived by expanding the time-domain electric and
magnetic fields in terms of the uncertain mesh parameters.
This approach is then extended to a wider range of uncertain
PEC geometries in section III. Numerical results for practical
microwave circuits are presented in section IV and validated
against Monte Carlo simulations.

II. MODELLING GEOMETRICAL UNCERTAINTY IN THE

FDTD METHOD WITH THE PCE

Due to random manufacturing tolerances (e.g. during
milling, etching or printing) individual realizations of a mi-
crowave circuit will have different, and uncertain, physical
geometry and dimensions [5], [1]. These uncertainties can be
expressed as random variables, characterized with appropriate
probability distributions. In this analysis it is assumed the
uncertainties are statistically independent; but these do not
have to be identically distributed.

A. The Polynomial Chaos Expansion

Randomness in the geometry and dimensions will introduce
uncertainty in the time-domain electric and magnetic fields
throughout the problem space [15]. The polynomial chaos
method expands these uncertain fields as a truncated sum-
mation of orthogonal basis functions, Ψa, in the N random
variables, ξ = {ξ1, ξ2, . . . ξN} [9]. For example, the expansion
for the uncertain Ez field component in the FDTD method can
be written [15], [17]
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are the weighting coefficients. The number

of terms is given by

P + 1 =
(N +D)!

N !D!
, (2)

where D is the highest polynomial order in the expansion.
The multivariate polynomial chaos basis functions can be
expressed

Ψa (ξ) =
N
∏

i=1

φma

i
(ξi) , (3)

where φma

i
(ξi) is a univariate orthogonal basis in ξi, and

ma
i is the multi-index corresponding to the order of the

expansion [10, pp. 64–67], for a = 0 . . . P . While any suitable
orthogonal functions may be used, it can be shown that the
optimal polynomial basis (providing exponential convergence),
φ (ξi), depends on the assumed distribution of random variable

ξi [9]. This association is termed the Wiener-Askey scheme—
in which, Gaussian distributed inputs are associated with
Hermite polynomials and uniformly distributed inputs with
Legendre polynomials [9]. In cases where the input parameter
distributions are difficult to determine (or unknown), uniform
or Gaussian probability density functions (PDFs) are often
assumed [10, pp. 44–46]. However, for geometrical uncertain-
ties, the infinite limits of the Gaussian distribution are non-
physical. This paper uses the approach proposed by Xiu [9],
where Gaussian random variables are approximated by the
Beta distribution, which has finite support; Jacobi polynomials
are then used as the basis functions. The resulting multivariate
basis functions are orthogonal with respect to the PDFs over
Ω, with an inner product given by

〈Ψa (ξ) ,Ψb (ξ)〉 =

∫

Ω

Ψa (ξ)Ψb (ξ)w (ξ) dξ

=
〈

Ψ2
a (ξ)

〉

δa,b. (4)

For Legendre polynomials, w = 0.5N with Ω ∈ [−1, 1]N ;

while for Jacobi polynomials, w =
∏N

i=1(1 − ξi)α(1 + ξi)β

with Ω ∈ [−1, 1]N ; α = β = 3 was used to provide an
acceptable approximation [10, pp. 113–115]

B. Modelling Geometrical Uncertainties

In general, an objects’ physical dimension, d, in an arbitrary
planar geometry can be modelled in the FDTD method by
d = n∆, where ∆ is the nominal lattice dimension, and n is
the number of Yee cells (subcell techniques can be used when
d is not an integer multiple of ∆). Uncertainty in the length of
d can be modelled by making n a random variable, keeping
∆ constant [15], [17]. This process spatially distributes the
uncertainty over several cells in the computational lattice
around the nominal boundary. The PCE can be applied to each
field component in these regions by translating the geometrical
uncertainty into an uncertainty in the material properties
(e.g. permittivity and conductivity) [15], [17]. However, this
approach is only feasible for uncertainty in the dimensions
of low-contrast dielectric materials. Highly conducting or
PEC materials introduce large spurious reflections along the
spatially distributed boundary, resulting in numerical instabil-
ity [16, pp. 208–213].

By contrast, in this analysis, randomness in the phys-
ical dimensions and geometry are incorporated into the
FDTD method by introducing uncertainty in ∆. For example,
Fig. 1(a) shows a PEC corner, where uncertainties in the
planar geometry—denoted by ξ1 and ξ2, and indicated by
the hatched regions—exist in both the x̂ and ŷ directions
and extend over several Yee lattice cells. By appropriately
expanding and compressing the dimensions of the mesh cells,
as depicted in Fig. 1(b), randomness in the position of the
PEC boundaries can be realized in the FDTD computational
domain. For example, the uncertainty in ∆x2 is given by

∆x2(ξ1) =
∆xmax +∆xmin

2
+

∆xmax −∆xmin

2
ξ1, (5)

where ξ1 is a uniform or Beta distributed random variable over
the interval −1 ≤ ξ1 ≤ 1, and ∆xmin and ∆xmax represent the
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1D. Xiu and Karniadakis, SIAM J. Sci. Comput., 24(2) 2002 

The Polynomial Chaos Expansion

! In practice we truncate the PCE

U(x, t; ξ) ≈
P
∑

a=0

ua(x, t)Ψa(ξ) where P + 1 =
(N + D)!

N!D!

D is the max polynomial order and N the number of RVs.

! Basic idea: expand the system’s governing equations using PC
basis functions → larger, coupled system (harder to solve).

! Advantages: rigorous theory, all statistics computed from one

simulation run!

! Successfully applied for a range of uncertainty analysis
problems: numerical weather prediction, CFD, some CEM
problems, e.g. uncertain material properties2.

2R. Edwards, A. Marvin and S. Porter, “Uncertainty analyses in the
finite-difference time-domain method”, IEEE Trans. EMC, 52(1) 2010.
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•  Basic idea: expand the system’s governing 
equations using PC basis functions 
– Larger, coupled system: harder to solve ! 

•  Advantages: rigorous theory, all statistics can be 
computed from one simulation  

•  Previously applied to some CEM problems 
– Material properties (FDTD)1,2 

– Coupling to transmission lines3 

 

Polynomial Chaos Expansion 

1R. Edwards et al., IEEE Trans. EMC-52(1), pp. 155-163, 2010 
2C. Chauviere et al., SIAM J. Sci. Compat. 28(2) pp. 751-775, 2006 
3P. Manfredi and F. Canavero, IEEE Trans. EMC-54(3) pp. 677-680, 2012  
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•  Important for analyzing fabrication tolerances 
–  Need to model uncertainty in metal/PEC (previous 

approaches cannot)   

Uncertain Geometry & Dimensions 

Uncertainties 

•  Incorporate randomness in the geometry by introducing 
uncertainty in the FDTD computational mesh  

Distorted mesh: 
one realization of a 
random geometry 
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•  Apply the PCE to expand the field components 

•  Substitute into curvilinear FDTD update eqns: 

PCE-FDTD Derivation I 
4

L1(ξ1) L2(ξ2) L3(ξ3)

d1(ξ4) d2(ξ5)

Fig. 2. The length of each nominally equal stub, L1..3, depends on the
independent random variables, ξ1..3, which are characterized by appropriate
PDFs. The local curvilinear mesh surrounding each stub is parameterized in
terms of ξ1..3. The polynomial chaos method is then used to expand the
time-domain electric and magnetic fields in terms of the curvilinear mesh-
distortion parameters. Uncertainty in d1..2 can be incorporated using the
approach outlined in section II.
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where F{van(t)} is the Fourier transform of the ath coeffi-
cient in the uncertain time-domain signal recorded at port n.
Equation (11) can be solved using numerical cubature, and the
statistics and sensitivity for the S-parameters can be found by
applying (8)–(10).

III. LOCAL MESH DISTORTION

The method outlined in the previous section—namely, glob-
ally distorting the cell spacing of the rectilinear Yee mesh—
cannot be used when the uncertainties in the physical geometry
are aligned but statistically independent. For example, Fig. 2
shows a microstrip filter where uncertainties in the (nominally
equal, and thus geometrically aligned) stub lengths L1..3

are statistically independent. In this and similar such cases,
randomness in the physical geometry can be incorporated into
the FDTD method by introducing uncertainty in the local
computational mesh. To accomplish this, a curvilinear FDTD
mesh is defined around each uncertain portion of the geometry
and parameterized in terms of the random variables. Fig. 2
shows how three local curvilinear computational meshes can
be distorted to achieve the desired (independent) uncertainties
in L1..3. A brief derivation for the curvilinear FDTD up-
date equations expanded using generalized polynomial chaos
follows—for the general case, where the curvilinear mesh is
parameterized by N random variables, ξ = {ξ1, . . . ξN}.

A. Application of Polynomial Chaos to Curvilinear FDTD

Uncertainty in the curvilinear computational mesh will
introduce uncertainty in the time-domain co- and contravariant
electric and magnetic field components. The polynomial chaos
expansion can then be applied to each field component, for

example, the uncertain contravariant E1 fields can be expanded
in terms of ξ,
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co- and contravariant electric and magnetic field components.
Equation (12) can be substituted into the curvilinear FDTD
update equation for the E1 component [22], resulting in
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are the coefficients due to uncertainty in the material proper-
ties [17]. A Galerkin procedure is applied for b = 0, . . . P ,
reducing (III-A) to
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Similar expressions can be derived for the remaining con-
travariant electric and magnetic field components. The co-
variant field components are computed by projecting the con-
travariant field components onto the curvilinear mesh. Spatial
averaging is required as the components are not collocated.
The update expression for the coefficients of the uncertain

4
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b〉

P
∑

a=0
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1
∣

∣

n
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〉

+
(
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∣

∣
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∣

∣
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2

i,j−1,k
− ah2

∣

∣
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2

i,j,k
+ ah2

∣

∣
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2

i,j,k−1

)

·

〈

β (ξ)
∣

∣

i,j,k

V (ξ)
∣

∣

E1

i,j,k

Ψa (ξ)Ψb (ξ)

〉

.

Similar expressions can be derived for the remaining con-
travariant electric and magnetic field components. The co-
variant field components are computed by projecting the con-
travariant field components onto the curvilinear mesh. Spatial
averaging is required as the components are not collocated.
The update expression for the coefficients of the uncertain

8

frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while each Monte
Carlo trial takes 11 minutes.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters) from
a single simulation run. The methods are validated by exam-
ining the of uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (III-A) are given
by

gEn,m
∣

∣

i,j,k
= A

E
n

∣

∣

i,j,k
·AE

m

∣

∣

i,j,k
. (13)

While the volume associated with the contravariant E1 field
component is given by [25, pp. 52–53]

V
∣

∣

E1

i,j,k
= 0.25AE

1

∣

∣

i,j,k
·
[(

A
H
2

∣

∣

i+1,j,k
+A

H
2

∣

∣

i+1,j,k+1

)

×
(

A
H
3

∣

∣

i+1,j,k
+A

H
3

∣

∣

i+1,j+1,k

)]

, (14)

where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [19, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (III-A)–(III-A) are computed using numerical quadrature,
therefore, it is not necessary to obtain closed form expressions
for (14) or (15) in terms of the distortions.

(i, j, k)

(i+ 1, j, k)(i, j + 1, k)

AE
2

AE
3

AE
1

Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors iden-
tified. The connectivity mesh remains rectilinear, and cells are appropriately
distorted to account for the geometrical uncertainties.
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PCE-FDTD Derivation II 

•  Apply a Galerkin procedure with a test 
function  

•  Inner products can be precomputed using 
numerical quadrature 

Modelling Uncertainties in the Geometry

! Apply a Galerkin procedure: take inner products with a test
function Ψb(ξ), b = 0, . . .P

ebz
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∣
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2
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2ε0εr − σ∆t
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〉

−
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(
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2

i ,j+1
2
,k+1

2

− hax
∣

∣

n+1
2

i ,j− 1
2
,k+1

2

)〈

Ψa(ξ)Ψb(ξ)

∆y(ξ)

〉

]

! The inner products can be precomputed using numerical
quadrature.

! Where there is no uncertainty, equations decouple: allows us
to use a standard PML formulation.

4

L1(ξ1) L2(ξ2) L3(ξ3)

d1(ξ4) d2(ξ5)

Fig. 2. The length of each nominally equal stub, L1..3, depends on the
independent random variables, ξ1..3, which are characterized by appropriate
PDFs. The local curvilinear mesh surrounding each stub is parameterized in
terms of ξ1..3. The polynomial chaos method is then used to expand the
time-domain electric and magnetic fields in terms of the curvilinear mesh-
distortion parameters. Uncertainty in d1..2 can be incorporated using the
approach outlined in section II.

appropriate ports) onto the basis functions. For example,
∣

∣Sb
21

∣

∣,
for b = 0, . . . P , is given by

∣

∣Sb
21(ω)

∣

∣ =

〈
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∣
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∑P
a=0 F{va2 (t)}Ψa (ξ)

∑P
a=0 F{va1 (t)}Ψa (ξ)

∣

∣

∣

∣

∣

,Ψb (ξ)

〉

(11)

where F{van(t)} is the Fourier transform of the ath coeffi-
cient in the uncertain time-domain signal recorded at port n.
Equation (11) can be solved using numerical cubature, and the
statistics and sensitivity for the S-parameters can be found by
applying (8)–(10).

III. LOCAL MESH DISTORTION

The method outlined in the previous section—namely, glob-
ally distorting the cell spacing of the rectilinear Yee mesh—
cannot be used when the uncertainties in the physical geometry
are aligned but statistically independent. For example, Fig. 2
shows a microstrip filter where uncertainties in the (nominally
equal, and thus geometrically aligned) stub lengths L1..3

are statistically independent. In this and similar such cases,
randomness in the physical geometry can be incorporated into
the FDTD method by introducing uncertainty in the local
computational mesh. To accomplish this, a curvilinear FDTD
mesh is defined around each uncertain portion of the geometry
and parameterized in terms of the random variables. Fig. 2
shows how three local curvilinear computational meshes can
be distorted to achieve the desired (independent) uncertainties
in L1..3. A brief derivation for the curvilinear FDTD up-
date equations expanded using generalized polynomial chaos
follows—for the general case, where the curvilinear mesh is
parameterized by N random variables, ξ = {ξ1, . . . ξN}.

A. Application of Polynomial Chaos to Curvilinear FDTD

Uncertainty in the curvilinear computational mesh will
introduce uncertainty in the time-domain co- and contravariant
electric and magnetic field components. The polynomial chaos
expansion can then be applied to each field component, for

example, the uncertain contravariant E1 fields can be expanded
in terms of ξ,

E1 (i, j, k, n, ξ) =
P
∑

a=0

ae
1
∣

∣

n

i,j,k
Ψa (ξ) (12)

where ae
1 are the expansion coefficients, and Ψ (ξ) is given

by (3). Similar expressions can be derived for the remaining
co- and contravariant electric and magnetic field components.
Equation (12) can be substituted into the curvilinear FDTD
update equation for the E1 component [22], resulting in

P
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In (III-A) V (ξ)
∣

∣

E1

i,j,k
is the volume of the {i, j, k} cell in the

uncertain curvilinear FDTD mesh (defined for contravariant
E1 field), and
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are the coefficients due to uncertainty in the material proper-
ties [17]. A Galerkin procedure is applied for b = 0, . . . P ,
reducing (III-A) to
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.

Similar expressions can be derived for the remaining con-
travariant electric and magnetic field components. The co-
variant field components are computed by projecting the con-
travariant field components onto the curvilinear mesh. Spatial
averaging is required as the components are not collocated.
The update expression for the coefficients of the uncertain
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•  Need to project contravariant fields:  
– g-metrics are uncertain 

PCE-FDTD Derivation III 

5

0.795 mm

2.54 mm

Terminated in PML

Port 2

2.438 mm

Port 1

Terminated in PML

d1 d3

d2

εr = 2.2

Fig. 3. Microstrip implementation of a low pass filter with uncertain dimen-
sions: d1 = 5.69±0.5 mm; d2 = 5.69±0.5 mm; and d3 = 4.064±1.0 mm.
Other dimensions are assumed to remain constant.

covariant be1 field is thus given by
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where gE11 (ξ), g
E
12 (ξ) and gE13 (ξ) are the projection vectors

for the curvilinear E-mesh in the presence of uncertainty.
The computation of these quantities is briefly outlined in
Appendix A. Similar to the analysis in section II, the inner
products in (III-A) and (III-A) are precomputed, however,
unlike (7) these must be stored for each cell in the curvilinear
mesh. The storage requirements for the inner products grow
proportional to (P +1)2, but in practice these can be substan-
tially reduced by using a hash table. Outside the curvilinear
mesh, there is no uncertainty in the volume or projection
vectors, and thus the inner products in (III-A) and (III-A)
reduce to Kronecker delta functions, and the b = 0, . . . P
update equations are decoupled.

IV. NUMERICAL RESULTS

A. Low Pass Microstrip Filter

Fig. 3 shows a microstrip implementation of a 5.6 GHz
low pass filter, with three uncertain dimensions identified,
{d1, d2, d3}. The FDTD computational lattice is 130×100×36
cells in size (including the CPML), and the nominal cell
dimensions are: ∆x = 0.4064 mm; ∆y = 0.4233 mm and
∆z = 0.265 mm [23]. The filter is excited at port 1 using
a modulated Gaussian pulse with a 10 GHz centre frequency
and solved to 4000 time steps. The Monte Carlo method is
applied by generating a set of 1000 uniformly distributed
random dimensions, appropriately scaling the lattice spacing,
and solving each realization of the circuit independently. Fig. 4

0 5 10 15 20
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0.2
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0.6

0.8

1
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|S
21

|

6-dB
Rolloff

Fig. 4. Magnitude of filter S21 for 25 samples drawn from the Monte Carlo
simulations. Each grey line represents one FDTD simulation with a particular
set of input parameters (stub lengths). The 6-dB roll-off frequency is observed
to vary with the stub lengths.

shows the magnitude of the filter S21 for 25 realizations
of the random stub lengths over a 0–20 GHz frequency
range. Changes to the stub lengths alters the frequency-domain
response of the filter, including the magnitude of the ripple in
the pass- and stop-bands and the roll-off. Fig. 5(a) shows the
mean S21 magnitude computed using Monte Carlo simulations
and the FDTD-PCE formulation outlined in section II-C. The
corresponding standard deviation about the mean values is
shown in Fig. 5(b). The standard deviation is observed to
increase in the roll-off regions of the filter response, indicating
an increased degree of uncertainty exists in the results at these
points.

The polynomial chaos expansion is truncated at order D =
{1, 2, 3}, and the time-domain emz field terms (recorded at
ports 1 and 2) are projected into the frequency-domain via (11)
to determine the uncertainty in the S-parameter statistics.
As shown in Fig. 5(a), the mean is well predicted across
the entire frequency range, and the convergence against the
Monte Carlo results improves with increasing D. However,
small deviations in the prediction of the mean occur beyond
18 GHz. Similar effects are observed in the prediction of the
standard deviation beyond 10 GHz. The differences between
the polynomial chaos results and Monte Carlo simulations
arise from two effects. Firstly, higher statistical moments, such
as the standard deviation and kurtosis, generally require higher
order polynomial terms to converge to the same level of error
in the mean prediction [9]. Secondly, at higher frequencies the
change in the electrical lengths of the stubs is larger, causing
increased uncertainty, which requires higher order polynomial
terms to converge—this effect is also observed in the subset
of Monte Carlo simulations shown in Fig. 4.

Fig. 6(a) shows PDFs of the 6 dB filter roll-off frequency
estimated from 1000 Monte Carlo trials and via the polynomial
chaos expansions. Accurate models for the expected spread
are important to assess the sensitivity of the predictions, and
can provide a measure of confidence in simulated results. The
shape of the PDF converges as the order of expansion increases
and generally compares well with the Monte Carlo results.
While 1000 Monte Carlo trials are sufficient to capture the
statistics around the mean, further trials would be required

8

frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while each Monte
Carlo trial takes 11 minutes.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters) from
a single simulation run. The methods are validated by exam-
ining the of uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (III-A) are given
by
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While the volume associated with the contravariant E1 field
component is given by [25, pp. 52–53]
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, (14)

where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [19, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (III-A)–(III-A) are computed using numerical quadrature,
therefore, it is not necessary to obtain closed form expressions
for (14) or (15) in terms of the distortions.
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(i+ 1, j, k)(i, j + 1, k)

AE
2
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3
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1

Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors iden-
tified. The connectivity mesh remains rectilinear, and cells are appropriately
distorted to account for the geometrical uncertainties.
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frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while each Monte
Carlo trial takes 11 minutes.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters) from
a single simulation run. The methods are validated by exam-
ining the of uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (III-A) are given
by

gEn,m
∣

∣

i,j,k
= A

E
n

∣

∣

i,j,k
·AE

m

∣

∣

i,j,k
(13)

While the volume associated with the contravariant E1 field
component is given by [25, pp. 52–53]

V
∣

∣

E1

i,j,k
= 0.25AE

1

∣

∣

i,j,k
·
[(

A
H
2

∣

∣

i+1,j,k
+A

H
2

∣

∣

i+1,j,k+1

)

×
(

A
H
3

∣

∣

i+1,j,k
+A

H
3

∣

∣

i+1,j+1,k

)]

(14)

where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [19, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (III-A)–(III-A) are computed using numerical quadrature,
therefore, it is not necessary to obtain closed form expressions
for (13) or (??) in terms of the distortions.

(i, j, k)

(i+ 1, j, k)(i, j + 1, k)

AE
2

AE
3

AE
1

Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors iden-
tified. The connectivity mesh remains rectilinear, and cells are appropriately
distorted to account for the geometrical uncertainties.
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Microstrip Lowpass Filter Applied Example: Microstrip Lowpass Filter

0.795 mm

2.54 mm

Terminated in PML

Port 2

2.438 mm

Port 1

Terminated in PML

d1 d3

d2

εr = 2.2

! Assume uncertainty exists in dn: d1 = 5.65± 0.5 mm;
d2 = 5.65± 0.5 mm; and d3 = 4.064± 0.5 mm.

Uncertainties: 
d1 = 5.65 ± 0.5 mm 
d2 = 5.65 ± 0.5 mm 
d3 = 4.06 ± 0.5 mm 
 
Assumed to be 
uniformly distributed 
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•  Uncertainty in stubs è randomness in S21 

Microstrip Lowpass Filter 
5

0.795 mm

2.54 mm

Terminated in PML

Port 2

2.438 mm

Port 1

Terminated in PML

d1 d3

d2

εr = 2.2

Fig. 3. Microstrip implementation of a low pass filter with uncertain dimen-
sions: d1 = 5.69±0.5 mm; d2 = 5.69±0.5 mm; and d3 = 4.064±1.0 mm.
Other dimensions are assumed to remain constant.

covariant be1 field is thus given by
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(15)

where gE11 (ξ), gE12 (ξ) and gE13 (ξ) are the projection vectors
for the curvilinear E-mesh in the presence of uncertainty.
The computation of these quantities is briefly outlined in
Appendix A. Similar to the analysis in section II, the inner
products in (14) and (15) are precomputed, however, unlike (7)
these must be stored for each cell in the curvilinear mesh. The
storage requirements for the inner products grow proportional
to (P +1)2, but in practice these can be substantially reduced
by using a hash table. Outside the curvilinear mesh, there is
no uncertainty in the volume or projection vectors, and thus
the inner products in (14) and (15) reduce to Kronecker delta
functions, and the b = 0, . . . P update equations are decoupled.

IV. NUMERICAL RESULTS

A. Low Pass Microstrip Filter
Fig. 3 shows a microstrip implementation of a 5.6 GHz

low pass filter, with three uncertain dimensions identified,
{d1, d2, d3}. The FDTD computational lattice is 130×100×36
cells in size (including the CPML), and the nominal cell
dimensions are: ∆x = 0.4064 mm; ∆y = 0.4233 mm and
∆z = 0.265 mm [23]. The filter is excited at port 1 using
a modulated Gaussian pulse with a 10 GHz centre frequency
and solved to 4000 time steps. The Monte Carlo method is
applied by generating a set of 1000 uniformly distributed
random dimensions, appropriately scaling the lattice spacing,
and solving each realization of the circuit independently. Fig. 4

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

|S
21

|

6−dB
Rolloff

Fig. 4. Magnitude of filter S21 for 25 samples drawn from the Monte Carlo
simulations. Each grey line represents one FDTD simulation with a particular
set of input parameters (stub lengths). The 6-dB roll-off frequency is observed
to vary with the stub lengths.

shows the magnitude of the filter S21 for 25 realizations
of the random stub lengths over a 0–20 GHz frequency
range. Changes to the stub lengths alters the frequency-domain
response of the filter, including the magnitude of the ripple in
the pass- and stop-bands and the roll-off. Fig. 5(a) shows the
mean S21 magnitude computed using Monte Carlo simulations
and the FDTD-PCE formulation outlined in section II-C. The
corresponding standard deviation about the mean values is
shown in Fig. 5(b). The standard deviation is observed to
increase in the roll-off regions of the filter response, indicating
an increased degree of uncertainty exists in the results at these
points.

The polynomial chaos expansion is truncated at order D =
{1, 2, 3}, and the time-domain emz field terms (recorded at
ports 1 and 2) are projected into the frequency-domain via (11)
to determine the uncertainty in the S-parameter statistics.
As shown in Fig. 5(a), the mean is well predicted across
the entire frequency range, and the convergence against the
Monte Carlo results improves with increasing D. However,
small deviations in the prediction of the mean occur beyond
18 GHz. Similar effects are observed in the prediction of the
standard deviation beyond 10 GHz. The differences between
the polynomial chaos results and Monte Carlo simulations
arise from two effects. Firstly, higher statistical moments, such
as the standard deviation and kurtosis, generally require higher
order polynomial terms to converge to the same level of error
in the mean prediction [9]. Secondly, at higher frequencies the
change in the electrical lengths of the stubs is larger, causing
increased uncertainty, which requires higher order polynomial
terms to converge—this effect is also observed in the subset
of Monte Carlo simulations shown in Fig. 4.

Fig. 6(a) shows PDFs of the 6 dB filter roll-off frequency
estimated from 1000 Monte Carlo trials and via the polynomial
chaos expansions. Accurate models for the expected spread
are important to assess the sensitivity of the predictions, and
can provide a measure of confidence in simulated results. The
shape of the PDF converges as the order of expansion increases
and generally compares well with the Monte Carlo results.
While 1000 Monte Carlo trials are sufficient to capture the
statistics around the mean, further trials would be required
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•  Mean is well predicted over 0−20 GHz 

Lowpass Filter: Mean S21 
Microstrip Lowpass Filter: Mean |S21|

! Uncertainty in the stub lengths will induce randomness in the
outputs.
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•  Uncertainty increases in the transition regions 

Lowpass Filter: Standard Deviation Microstrip Lowpass Filter: Standard deviation in |S21|

! Uncertainty tends to increase in the transition regions.

! Increasing PCE order improves agreement with MC.
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•  Partial variances from PCE to estimate the 
contribution each parameter makes toward S21 

Lowpass Filter: Sensitivity Analysis 
Microstrip Lowpass Filter: Sensitivity Analysis

! Use partial variances to estimate the contribution each
parameter makes toward |S21|.

! d1 and d2 are the stub lengths; d3 is the separation.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Frequency (GHz)

C
on

tri
bu

tio
n 

to
 |S

21
| U

nc
er

ta
in

ty

 

 

d1

d2

d3

d1 

d2 

d3 



WE4D-2 IMS2013, Seattle, June 2-7, 2013 Slide 15 

•  Convergence to MC as we increase order 

Lowpass Filter: PDF 
6
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Fig. 5. Comparison of the (a) Mean and (b) Standard deviation in |S21|
computed using 1000 Monte Carlo (MC) trials and via polynomial chaos
expansions (PCE).

to improve accuracy in the tails of the distribution. Fig. 6(b)
shows the relative contribution of each stub length to the
uncertainty in |S21| computed via (10). The uncertainty in
the pass band ripple is dominated by d3, the stub separation;
whereas in the transition regions and the stop band, the lengths
of the stubs have greater impact. This analysis is valuable as
it indicates which parameters should be targeted to have the
greatest reduction in the variability of the response.

The simulation time for each Monte Carlo trial is approx-
imately 4 minutes (on a 3.3 GHz Intel i3 processor); 1000
trials thus take 2.5 days. By comparison, the polynomial
chaos method requires approximately 8, 23 and 58 minutes for
D = 1–3 respectively. The additional overhead in computing
the inner products and post processing the results is small
compared the FDTD run-times.

B. Cascaded Stub Line Filter
The curvilinear PCE-FDTD method is applied to estimate

the response statistics for the lowpass cascaded stub line filter
shown in Fig. 2. Two and four stub designs are considered for
a 6 GHz operating frequency. Due to fabrication tolerances,
uncertainty exists in the stub lengths, L, and separation, d.
The nominal dimensions are d = 15 mm and L = 12.5 mm,
and the uncertainties are assumed to be Beta distributed with
standard deviation, σ = 0.167 mm and limits ±0.5 mm. The
rectilinear parent mesh is 85 × 65 × 30 cells in size (and
terminated in a 10 cell thick CPML), while the curvilinear
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Fig. 6. (a) Probability density functions of the low pass filter 6 dB roll-
off point computed using 1000 Monte Carlo trials and via polynomial chaos
expansions. (b) Relative contribution of each stub length to the uncertainty in
|S21| computed using the D = 3 expansion.

sub-meshes are 26 × 26 × 26 and defined around the stubs.
Covariant components on the boundaries on the curvilinear
mesh are aligned with appropriate field components in the
rectilinear lattice and are exchanged at each time step. The
nominal cell is 0.25 mm3, and the smallest cell dimensions in
either the rectilinear or curvilinear mesh are used to set the
stable time-step, in this case ∆t = 0.238 ps.

Fig. 7(a) shows estimates of the mean |S21| and 90%
confidence intervals for the two-stub filter computed via the
PCE truncated at D = 3 and 1000 Monte Carlo trials; the
close agreement over 3–9 GHz demonstrates the validity of the
polynomial chaos approach. The limits of the 90% confidence
interval are found from the PDFs, such that 5% of the data are
expected to fall outside upper and lower bounds respectively.
In the passband there is little deviation from the mean |S21|,
indicating the design is relatively insensitive to the fabrication
uncertainty. However, in the transition region and stopband
the 90% confidence interval is observed to increase with
frequency. Random displacement of the open circuited stubs
alters the input impedance, shifting the resonant frequency of
the structure and thereby introducing uncertainty in the filter
roll-off characteristics.

Sharper roll-off can be achieved by using additional stubs—
e.g. Fig. 7(b) shows |S21| for a four stub structure with greater
attenuation at the expense of increased ripple in the passband.
However, relative to the two stub case, the uncertainty in the
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•  Aligned geometry: curvilinear mesh PCE-FDTD  
•  Uncertainties: L ~ β (µ = 12.5 mm, σ = 0.17 mm) 

Cascaded Stubline Filter 

Solution: Distort the Computational Mesh

! Introduce local curvilinear meshes, parameterized in terms of
the random dimensions.

! Expand the curvilinear FDTD update equations using the
PCE.

L1(ξ1) L2(ξ2) L3(ξ3)
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•  Uncertainty increases in the roll-off 

Two Stub Filter 
7

3 4 5 6 7 8 9
−40

−30

−20

−10

0

10

Frequency (GHz)

|S
21

| (
dB

)

 

 

PCE, 5% Quantile
PCE, 95% Quantile
PCE, Mean
MC, 5% Quantile
MC, 95% Quantile
MC, Mean

(a)

3 4 5 6 7 8 9
−80

−60

−40

−20

0

20

Frequency (GHz)

|S
21

| (
dB

)

 

 

PCE, 5% Quantile
PCE, 95% Quantile
PCE, Mean
MC, 5% Quantile
MC, 95% Quantile
MC, Mean

(b)

Fig. 7. Mean and 90% confidence intervals of |S21| in dB units for the
cascaded stub line filter computed using the PCE truncated at D = 3,
and 1000 Monte Carlo (MC) trials. (a) Two-stub filter with Beta distributed
uncertainties, σ = 0.167 mm in L1, L2 and d1; and (b) four-stub filter with
σ = 0.167 mm in L1–L4.

filter characteristics is observed to increase. The filter elements
are cascaded and thus uncertainty introduced at each stage
will accumulate. A greater deviation between the statistics
computed with the PCE and Monte Carlo simulations is also
observed. The PCE can be interpreted as a interpolation in the
random space spanned by the input parameters. Depending on
the complexity of the interactions between the filter elements
higher order terms may be required to achieve convergence.
Nonetheless, the results shown in Fig. 7(b) provide a good
approximation to the actual statistics, given the reduction in
computational costs (approximately 12 hours for the single
PCE simulation; and 150 hours for 1000 Monte Carlo trials).

C. Directional Coupler
Fig. 8(a) shows a microstrip implementation of a 20 dB

directional coupler designed to operate over 10–20 GHz [24,
pp. 390–392]. The thickness of the εr = 2.2 substrate is
5 mil (1 mil = 25.4 µm) and the corners of the lines are
mitred to minimize reflections. Due to fabrication tolerances,
uncertainty exists in the orientation and separation of the
coupled lines. The random deviation of each line from the
nominal (parallel) configuration is statistically independent
and assumed to be uniformly distributed between 3.75–6.25
mil, with a nominal separation of 5 mil. The other dimensions
are assumed to remain constant. Similar to the cascaded stub
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Fig. 8. (a) Curvilinear FDTD mesh for a microstrip implementation of
a 20 dB 10–20 GHz directional coupler with uncertain separation between
the coupled lines (dimensions are not drawn to scale); (b) Mean and 95%
confidence intervals for the coupling, |S13|, and isolation, |S14|, computed
using 1000 Monte Carlo trials and the curvilinear PCE-FDTD truncated at
D = 4.

filter described in section IV-B, a curvilinear FDTD mesh is
defined around each coupled line and parameterized in terms
of the random deviations. The circuit is excited with a 15 GHz
modulated Gaussian pulse at port 1 (the remaining ports are
terminated in the PML), and the uncertainty in the response is
estimated using the curvilinear PCE-FDTD method outlined
in section III.

Input signals from port 1 are coupled into port 3, while
being isolated from port 4. Fig. 8(b) show statistics for the
coupling, |S13|, and isolation, |S14| estimated from 1000
Monte Carlo trials and the curvilinear PCE-FDTD truncated at
order D = 4; good agreement is found across the 5–25 GHz
frequency range. Randomness in the relative separation and
orientation of the coupled lines alters their even and odd mode
capacitance and characteristic impedance and thereby intro-
duces uncertainty in the coupling and isolation. For example,
at 15 GHz the 95% of the data is expected to fall between
−18.5 dB and −20.2 dB. By contrast, the relative uncertainty
in the isolation is considerably larger, particularly at lower

90% falls 
between 
the limits 
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•  Uncertainty accumulates as we cascade more 
elements: higher orders needed to converge 

Four Stub Filter 
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Fig. 7. Mean and 90% confidence intervals of |S21| in dB units for the
cascaded stub line filter computed using the PCE truncated at D = 3,
and 1000 Monte Carlo (MC) trials. (a) Two-stub filter with Beta distributed
uncertainties, σ = 0.167 mm in L1, L2 and d1; and (b) four-stub filter with
σ = 0.167 mm in L1–L4.

filter characteristics is observed to increase. The filter elements
are cascaded and thus uncertainty introduced at each stage
will accumulate. A greater deviation between the statistics
computed with the PCE and Monte Carlo simulations is also
observed. The PCE can be interpreted as a interpolation in the
random space spanned by the input parameters. Depending on
the complexity of the interactions between the filter elements
higher order terms may be required to achieve convergence.
Nonetheless, the results shown in Fig. 7(b) provide a good
approximation to the actual statistics, given the reduction in
computational costs (approximately 12 hours for the single
PCE simulation; and 150 hours for 1000 Monte Carlo trials).

C. Directional Coupler
Fig. 8(a) shows a microstrip implementation of a 20 dB

directional coupler designed to operate over 10–20 GHz [24,
pp. 390–392]. The thickness of the εr = 2.2 substrate is
5 mil (1 mil = 25.4 µm) and the corners of the lines are
mitred to minimize reflections. Due to fabrication tolerances,
uncertainty exists in the orientation and separation of the
coupled lines. The random deviation of each line from the
nominal (parallel) configuration is statistically independent
and assumed to be uniformly distributed between 3.75–6.25
mil, with a nominal separation of 5 mil. The other dimensions
are assumed to remain constant. Similar to the cascaded stub
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Fig. 8. (a) Curvilinear FDTD mesh for a microstrip implementation of
a 20 dB 10–20 GHz directional coupler with uncertain separation between
the coupled lines (dimensions are not drawn to scale); (b) Mean and 95%
confidence intervals for the coupling, |S13|, and isolation, |S14|, computed
using 1000 Monte Carlo trials and the curvilinear PCE-FDTD truncated at
D = 4.

filter described in section IV-B, a curvilinear FDTD mesh is
defined around each coupled line and parameterized in terms
of the random deviations. The circuit is excited with a 15 GHz
modulated Gaussian pulse at port 1 (the remaining ports are
terminated in the PML), and the uncertainty in the response is
estimated using the curvilinear PCE-FDTD method outlined
in section III.

Input signals from port 1 are coupled into port 3, while
being isolated from port 4. Fig. 8(b) show statistics for the
coupling, |S13|, and isolation, |S14| estimated from 1000
Monte Carlo trials and the curvilinear PCE-FDTD truncated at
order D = 4; good agreement is found across the 5–25 GHz
frequency range. Randomness in the relative separation and
orientation of the coupled lines alters their even and odd mode
capacitance and characteristic impedance and thereby intro-
duces uncertainty in the coupling and isolation. For example,
at 15 GHz the 95% of the data is expected to fall between
−18.5 dB and −20.2 dB. By contrast, the relative uncertainty
in the isolation is considerably larger, particularly at lower
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•  Curvilinear mesh to introduce uncertainty in 
separation and orientation between the lines 

20dB Microstrip Directional Coupler 
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•  Uncertainty in coupling and isolation predicted 
by the PCE compare well with MC results 

Directional Coupler 
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Fig. 7. Mean and 90% confidence intervals of |S21| in dB units for the
cascaded stub line filter computed using the PCE truncated at D = 3,
and 1000 Monte Carlo (MC) trials. (a) Two-stub filter with Beta distributed
uncertainties, σ = 0.167 mm in L1, L2 and d1; and (b) four-stub filter with
σ = 0.167 mm in L1–L4.

filter characteristics is observed to increase. The filter elements
are cascaded and thus uncertainty introduced at each stage
will accumulate. A greater deviation between the statistics
computed with the PCE and Monte Carlo simulations is also
observed. The PCE can be interpreted as a interpolation in the
random space spanned by the input parameters. Depending on
the complexity of the interactions between the filter elements
higher order terms may be required to achieve convergence.
Nonetheless, the results shown in Fig. 7(b) provide a good
approximation to the actual statistics, given the reduction in
computational costs (approximately 12 hours for the single
PCE simulation; and 150 hours for 1000 Monte Carlo trials).

C. Directional Coupler

Fig. 8(a) shows a microstrip implementation of a 20 dB
directional coupler designed to operate over 10–20 GHz [24,
pp. 390–392]. The thickness of the εr = 2.2 substrate is
5 mil (1 mil = 25.4 µm) and the corners of the lines are
mitred to minimize reflections. Due to fabrication tolerances,
uncertainty exists in the orientation and separation of the
coupled lines. The random deviation of each line from the
nominal (parallel) configuration is statistically independent
and assumed to be uniformly distributed between 3.75–6.25
mil, with a nominal separation of 5 mil. The other dimensions
are assumed to remain constant. Similar to the cascaded stub
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Fig. 8. (a) Curvilinear FDTD mesh for a microstrip implementation of
a 20 dB 10–20 GHz directional coupler with uncertain separation between
the coupled lines (dimensions are not drawn to scale); (b) Mean and 95%
confidence intervals for the coupling, |S13|, and isolation, |S14|, computed
using 1000 Monte Carlo trials and the curvilinear PCE-FDTD truncated at
D = 4.

filter described in section IV-B, a curvilinear FDTD mesh is
defined around each coupled line and parameterized in terms
of the random deviations. The circuit is excited with a 15 GHz
modulated Gaussian pulse at port 1 (the remaining ports are
terminated in the PML), and the uncertainty in the response is
estimated using the curvilinear PCE-FDTD method outlined
in section III.

Input signals from port 1 are coupled into port 3, while
being isolated from port 4. Fig. 8(b) show statistics for the
coupling, |S13|, and isolation, |S14| estimated from 1000
Monte Carlo trials and the curvilinear PCE-FDTD truncated at
order D = 4; good agreement is found across the 5–25 GHz
frequency range. Randomness in the relative separation and
orientation of the coupled lines alters their even and odd mode
capacitance and characteristic impedance and thereby intro-
duces uncertainty in the coupling and isolation. For example,
at 15 GHz the 95% of the data is expected to fall between
−18.5 dB and −20.2 dB. By contrast, the relative uncertainty
in the isolation is considerably larger, particularly at lower
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Relative Computational Costs 

•  A large number of Monte Carlo trials must 
be run to ensure convergence 
– 1000 trials used: multiple days 

•  # of PCE terms grow rapidly: 

The Polynomial Chaos Expansion

! In practice we truncate the PCE

U(x, t; ξ) ≈
P
∑

a=0

ua(x, t)Ψa(ξ) where P + 1 =
(N + D)!

N!D!

D is the max polynomial order and N the number of RVs.

! Basic idea: expand the system’s governing equations using PC
basis functions → larger, coupled system (harder to solve).

! Advantages: rigorous theory, all statistics computed from one

simulation run!

! Successfully applied for a range of uncertainty analysis
problems: numerical weather prediction, CFD, some CEM
problems, e.g. uncertain material properties2.

2R. Edwards, A. Marvin and S. Porter, “Uncertainty analyses in the
finite-difference time-domain method”, IEEE Trans. EMC, 52(1) 2010.
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frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while each Monte
Carlo trial takes 11 minutes.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters) from
a single simulation run. The methods are validated by exam-
ining the of uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (III-A) are given
by
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While the volume associated with the contravariant E1 field
component is given by [25, pp. 52–53]
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where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [19, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (III-A)–(III-A) are computed using numerical quadrature,
therefore, it is not necessary to obtain closed form expressions
for (13) or (14) in terms of the distortions.

(i, j, k)
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Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors iden-
tified. The connectivity mesh remains rectilinear, and cells are appropriately
distorted to account for the geometrical uncertainties.

TABLE I
MATERIAL PROPERTIES AND ASSOCIATED UNCERTAINTY

Monte Carlo PCE-FDTD
(each trial) Order, D Time × RAM

Microstrip Filter, N = 3 4 mins 3 58 mins ×20
Cascaded Filter, N = 4 25 mins 4 12 hours ×70
Directional Coupler, N = 2 11 mins 4 4.5 hours ×15
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•  Novel method to characterize geometrical 
uncertainties in the FDTD method 

•  Polynomial Chaos used to expand uncertainty 
fields in terms of the mesh distortion 

•  Applied to several microwave circuits: good 
agreement with Monte Carlo at significantly 
lower computational cost  

Conclusions 
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•  Relate basis functions to the PDFs of the inputs: 
optimal convergence1 

Weiner-Askey Scheme 

1D. Xiu and Karniadakis, SIAM J. Sci. Comput., 24(2) 2002 

The Weiner-Askey Scheme

! Basis functions must be orthogonal:

〈Ψa(ξ),Ψb(ξ)〉 =
〈

Ψ2
a

〉

δa,b

! Relate basis functions to the probability distributions of the
RVs: shown to given optimal (exponential) convergence1.

Random Weiner-Askey
Variable, ξ Polynomial, Ψ Support

Gaussian Hermite [−∞,∞]
Uniform Legendre [a, b]
Beta Jacobi [a, b]
Gamma Laguerre [0,∞]

1D. Xiu and G. Karniadakis, “The Wiener-Askey polynomial chaos for
stochastic differential equations,” SIAM J. Sci. Comput., 24(2) 2002.
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•  Randomness in the mesh parameters introduces 
uncertainty in the time-domain EM fields 

Random Curvilinear Mesh 

8

frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while each Monte
Carlo trial takes 11 minutes.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters) from
a single simulation run. The methods are validated by exam-
ining the of uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (III-A) are given
by
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While the volume associated with the contravariant E1 field
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where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [19, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (III-A)–(III-A) are computed using numerical quadrature,
therefore, it is not necessary to obtain closed form expressions
for (14) or (15) in terms of the distortions.
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Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors iden-
tified. The connectivity mesh remains rectilinear, and cells are appropriately
distorted to account for the geometrical uncertainties.
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frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while each Monte
Carlo trial takes 11 minutes.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters) from
a single simulation run. The methods are validated by exam-
ining the of uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (III-A) are given
by
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where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [19, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (III-A)–(III-A) are computed using numerical quadrature,
therefore, it is not necessary to obtain closed form expressions
for (13) or (??) in terms of the distortions.
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Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors iden-
tified. The connectivity mesh remains rectilinear, and cells are appropriately
distorted to account for the geometrical uncertainties.
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[13] H. Baǧci, A. C. Yucel, J. S. Hesthaven, and E. Michielssen, “A
fast Stroud-based collocation method for statistically characterizing
EMI/EMC phenomena on complex platforms,” IEEE Trans. Electro-
magn. Compat., vol. 51, no. 2, pp. 301–311, 2009.

[14] A. C. M. Austin, N. Sood, J. Siu, and C. D. Sarris, “Application
of polynomial chaos to quantify uncertainty in deterministic channel
models,” IEEE Trans. Antennas Propag. (submitted for publication),
Dec. 2012, minor revision Apr. 2013.

[15] C. Chauviere, J. S. Hesthaven, and L. Lurati, “Computational modeling
of uncertainty in time-domain electromagnetics,” SIAM J. Sci. Comput.,
vol. 28, no. 2, pp. 751–775, 2006.

[16] R. S. Edwards, “Uncertainty analyses in computational electromag-
netism,” Ph.D. dissertation, The University of York, York, UK, March
2009.

[17] R. S. Edwards, A. C. Marvin, and S. J. Porter, “Uncertainty analyses
in the finite-difference time-domain method,” IEEE Trans. Electromagn.
Compat., vol. 52, no. 1, pp. 155–163, Feb. 2010.

[18] A. C. M. Austin and C. D. Sarris, “Efficient analysis of parameter uncer-
tainty in FDTD models of microwave circuits using polynomial chaos,”
in Digest IEEE MTT-S Int. Microw. Symp. (accepted for publication),
2013.

8

frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while each Monte
Carlo trial takes 11 minutes.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters) from
a single simulation run. The methods are validated by exam-
ining the of uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (III-A) are given
by

gEn,m
∣

∣

i,j,k
= A

E
n

∣

∣

i,j,k
·AE

m

∣

∣

i,j,k
(13)

While the volume associated with the contravariant E1 field
component is given by [25, pp. 52–53]

V
∣

∣

E1

i,j,k
= 0.25AE

1

∣

∣

i,j,k
·
[(

A
H
2

∣

∣

i+1,j,k
+A

H
2

∣

∣

i+1,j,k+1

)

×
(

A
H
3

∣

∣

i+1,j,k
+A

H
3

∣

∣

i+1,j+1,k

)]

(14)

where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [19, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (III-A)–(III-A) are computed using numerical quadrature,
therefore, it is not necessary to obtain closed form expressions
for (13) or (??) in terms of the distortions.

(i, j, k)

(i+ 1, j, k)(i, j + 1, k)

AE
2

AE
3

AE
1

Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors iden-
tified. The connectivity mesh remains rectilinear, and cells are appropriately
distorted to account for the geometrical uncertainties.
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•  Relative sensitivities estimated by considering 
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Estimating Output Statistics from the PCE

! Solve the coupled system of equations: express outputs of
interest as an expansion in the PC basis functions
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! PDFs can be estimated by running a MC analysis on the
expansion.

! Relative sensitivities can be estimated by considering partial
variances (Sobol decomposition).
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