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Uncertainty Quantification and Parameter Estimation in the
Finite-difference Frequency-domain Method Using Polynomial Chaos

Andrew C. M. Austin*

Abstract—A new numerical method is proposed for uncertainty quantification in the two-dimensional
finite-difference frequency-domain (FDFD) method. The method is based on an intrusive polynomial
chaos expansion (PCE) of the Helmholtz equation in terms of the material properties. The resulting
PCE-FDFD method is validated against Monte-Carlo simulations for an electromagnetic scattering
problem at 1.0GHz. Good agreement is found between the statistics of the electric fields computed using
the proposed method and the Monte-Carlo results, with a factor 15–120 reduction in the computational
costs. The PCE-FDFD method is also applied to estimate the material properties from exterior
measurements by formulating an objective function and applying constrained optimisation techniques.
A maximum 1.7% error in the material properties was observed for a test geometry with six unknowns
and 20 sample points.

1. INTRODUCTION

The finite-difference frequency-domain (FDFD) method is a relatively simple, yet highly accurate,
frequency-domain technique to numerically solve Maxwell’s equations on the Yee mesh [1–3]. In
particular — combined with the perfectly matched layer (PML) absorbing boundary condition [1],
and total-field/scattered-field sources [2] — two-dimensional implementations of the FDFD method
have been widely used as the deterministic ‘forward’ solvers for electromagnetic inverse scattering and
imaging applications [4–6], and for modelling propagation through biological tissue [3, 7].

A significant challenge for numerical electromagnetic techniques, such as the FDFD method, is the
inclusion of uncertainties and randomness in the input parameters. In particular, random variations
in the material properties or geometry will ‘propagate’ through a numerical method to introduce
uncertainty in the solutions [8]. Quantifying this uncertainty is important for sensitivity analysis, inverse
problems, and parameter estimation. A single simulation run at the nominal values (or otherwise) will
not capture this information. Currently, the Monte-Carlo method is used to predict uncertainty in
electromagnetic simulations. However, Monte-Carlo typically converges slowly and is impractical for
large problems, though advances such as multi-level Monte-Carlo can converge faster and have been
applied for electromagnetic problems [9].

Recently, computationally efficient methods based on the polynomial chaos expansion (PCE) have
been used to characterise uncertainty in computational electromagnetics, e.g., the finite-difference time-
domain method [8, 10–16], and the method of moments [17]. Polynomial chaos methods can be broadly
divided into intrusive and non-intrusive formulations. Non-intrusive techniques, such as stochastic
collocation, collate a number of deterministic simulation runs and compute the coefficients in the PCE
via multi-dimensional quadrature (which can be expensive, unless sparse grid quadrature rules are
used) [18–20]. In contrast, intrusive PCE expands the governing equations of a numerical method
in terms of the basis functions and recasts these using a Galerkin procedure [8, 10, 21]. While the
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computational costs are increased relative to the non-stochastic case, the intrusive polynomial chaos
method converges faster than Monte-Carlo and can provide accurate estimates for the statistics from a
single simulation run [21, pp. 78–88].

Contributions: This paper proposes a new numerical method based on the application of intrusive
PCE to the two-dimensional FDFD method. We derive the new coupled governing equations for the
PCE-FDFD method and show how these can be arranged in a matrix to solve for the random electric
fields. In particular, we focus on uncertainties arising from random material dielectric properties,
i.e., permittivity, εr, and conductivity, σ, and validate the PCE-FDFD solutions against Monte-Carlo
simulations. Of particular relevance to this paper, a similar approach was proposed for the two-
dimensional FDFD method in [3] and [7], using Taylor’s series expansions for the uncertain parameters.
However, the proposed PCE-FDFD method uses polynomial chaos basis functions which capture
cross-correlation terms between the uncertain parameters, allowing more accurate statistics and larger
variabilities to be considered [11]. Accordingly, another contribution of this paper is to validate the
performance of the PCE-FDFD method for parameter estimation, where exterior ‘measurements’ of the
electric fields are used to infer the material properties.

This paper is structured as follows: Section 2 outlines the derivation of the 2D PCE-FDFD method
and shows the matrix structure of the coefficients. Section 3 provides a validation of the proposed method
against the Monte-Carlo technique. In Section 4 the PCE-FDFD solution is applied to parameter
estimation. The paper is briefly concluded in Section 5.

2. DERIVATION OF THE PCE-FDFD METHOD

2.1. Helmholtz Equation

In the frequency domain, the Helmholtz equation for the vector electric field, E, is given by

∇2E = jωµσE− ω2µεE (1)

where ω = 2πf is the angular frequency, and the waves are assumed to propagate in a medium with
permittivity ε = ε0εr, permeability µ = µ0µr, and conductivity σ. Assuming two-dimensional TMz

polarisation, (1) can be expressed
∂2Ez

∂x2
+

∂2Ez

∂y2
− γEz = 0 (2)

where γ = jωµ(σ + jωε). When there is no uncertainty in the material properties (2) can be
solved directly by discretising the problem space and applying finite-difference approximations to the
derivatives [1]. The following subsections will discuss how uncertainties in the material properties can
be incorporated into (2) using polynomial chaos.

2.2. The Polynomial Chaos Expansion

Assuming the uncertainties in the permittivity and conductivity for each material can be expressed

εr (ξk) = εnom
r + xεrξk (3)

σ (ξk+1) = σnom + xσξk+1 (4)

where εnom
r and σnom represent the nominal permittivity and conductivity, ξk and ξk+1 are independently

distributed random variables, and xεr and xσ represent the variability. There are a total of K random
variables ξ = {ξ1, ξ2, . . . , ξK} and the polynomial chaos method expands the uncertain Ez fields in (2)
as a truncated summation of multivariate orthogonal basis functions Ψa in ξ, for example,

Ez(ξ) =
P∑

a=0

ea
zΨa (ξ) (5)

where ea
z are the weighting coefficients, which are also functions of space. The number of terms, assuming

a total-degree basis is given by

P + 1 =
(K + D)!

K!D!
(6)
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where D is the highest order in the polynomial expansion. The multivariate polynomial chaos basis
functions are given by

Ψa (ξ) =
K∏

k=1

φha
k
(ξk) , (7)

where φha
k
(ξk) is a univariate orthogonal polynomial function in ξk, and ha

k is the k-th element of a
multi-index [21, pp. 64–67]. The elements of the multi-index specify the degree of the corresponding
univariate polynomials. The multivariate basis functions are orthogonal over the domain Ω with respect
to a weight function w, which is the PDF associated with each polynomial family through the Wiener-
Askey scheme [21]. The inner products are given by

〈Ψa (ξ) ,Ψb (ξ)〉 =
∫

Ω
Ψa (ξ)Ψb (ξ) w (ξ) dξ = 〈Ψ2

a (ξ)〉δa,b. (8)

For uniformly distributed random variables, Legendre polynomials are used with w = 0.5K and
Ω = [−1, 1]K [21]. In the presence of uncertainty introduced by randomness in εr and σ, (2) can
be expressed

∂2Ez(ξ)
∂x2

+
∂2Ez(ξ)

∂y2
− γ(ξ)Ez(ξ) = 0. (9)

Substituting (5) into (9) yields

∂2
P∑

a=0

ea
zΨa (ξ)

∂x2
+

∂2
P∑

a=0

ea
zΨa (ξ)

∂y2
+ γ(ξ)

P∑

a=0

ezΨa (ξ) = 0. (10)

Applying a Galerkin procedure to (10) by taking inner products with the test function Ψb(ξ), where
b = 0, . . . , P , yields

∂2eb
z

∂x2

〈
Ψ2

b(ξ)
〉

+
∂2eb

z

∂y2

〈
Ψ2

b(ξ)
〉

+
P∑

a=0

ea
z 〈γ(ξ)Ψa(ξ)Ψb(ξ)〉 = 0. (11)

Discretising (11) on a regular N×M grid (with mesh dimensions ∆x and ∆y), and applying second-order
finite-differences leads to

〈
Ψ2

b

〉 eb
z|n+1,m − 2eb

z|n,m + eb
z|n−1,m

∆x2
+

〈
Ψ2

b

〉 eb
z|n,m+1 − 2eb

z|n,m + eb
z|n,m−1

∆y2
. . .

+
P∑

a=0

ea
z |n,m 〈γ(ξ)|n,mΨa(ξ)Ψb(ξ)〉 = 0 (12)

for b = 0 . . . P , where n = 1 . . . N , and m = 1 . . . M , are the spatial indices in the x and y direction,
respectively.

2.3. Matrix Structure

Equation (12) can be put into matrix form

Ax = b (13)

where A ∈ CNM(P+1)×NM(P+1) is a matrix of the coefficients in (12), x ∈ CNM(P+1) is a vector of the
ez|an,m coefficients, and b ∈ CNM(P+1) is the source vector. Plane-wave incidence can be implemented
by dividing the mesh into total-field and scattered-field regions and calculating the necessary source
correction-terms for b [2]. It should be noted that sources are only applied to the b = 0 coefficient.
The set of equations described by (12) can be viewed as P + 1 FDFD computational meshes for each of
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the ez|bn,m weighting coefficients, where these are interlinked by the 〈γ(ξ)|n,mΨa(ξ)Ψb(ξ)〉 inner product
terms. In spatial regions where there is no uncertainty, the inner product reduces to

γ|n,m 〈Ψa(ξ)Ψb(ξ)〉 =
{

γ|n,m

〈
Ψ2

b(ξ)
〉

for a = b
0 otherwise. (14)

For regions where there is uncertainty in εr and σ the inner products in (12) need to be numerically
computed using multivariate quadrature [8]. Fig. 1 shows the structure of the A matrix. In this example
the expansion is truncated after 3 terms. The resulting linear system of equations are solved in Matlab
to find the coefficients. To numerically absorb outgoing waves a PML as detailed in [1] is implemented.
It should be noted that the PML does not alter the structure of the A matrix, however, it does need
to be implemented for each of the P + 1 coefficients. A maximum reflection error of 0.2% was observed
for a 12-cell thick PML for each coefficient.

a = 0 a = 1 a = 2

b = 0

b = 1

b = 2

e0
1,1

e0
N, M

e1
1,1

e1
N, M

e2
1,1

e2
N, M

Linear system of FDFD equations for each coefficient

Innerproducts (14) to interlink the coefficients

A x

Figure 1. Structure of the A matrix and x vector for the proposed PCE-FDFD method. Uncoloured
regions in A represent zeros.

3. VALIDATION EXAMPLE

Figure 2 shows the two-dimensional geometry considered to validate the PCE-FDFD method. The
geometry consists of three nested cylinders with different dielectric properties, uncertainty, and radii:
r1 = 0.3m and r2 = r3 = 0.11m. The uncertainties are assumed to be uniformly distributed and
represent a ±20% variation from the nominal values. The source is a 1.0GHz planewave travelling in
the +x direction [2]. The mesh size is ∆x = ∆y = 0.005m to ensure a sampling density of at least 15
cells per wavelength in the most optically dense medium.

The uncertainty in Ez is computed using the PCE-FDFD method outlined in the previous section.
In this example the expansion is truncated at D = 1. Fig. 3 shows a surface plot of the e0

z coefficient,
which represents the mean solution. As expected the lossy dielectric cylinders attenuate the propagating
signal. Figs. 4(a)–(f) show the six PCE coefficients corresponding to the permittivity and conductivity
of each cylinder. These surface plots show the contribution each material property makes toward the
overall uncertainty in the electric field. For example, Fig. 4(c) shows the uncertainty introduced by the
permittivity of cylinder 2 is most significant (represented by larger values of the coefficient e3

z) within
the cylinder, but also extends outside the bounds and into the scattered region. It is observed that the
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value of the e3
z coefficient is close to zero within cylinder 3 and in regions shadowed by this cylinder.

The relative magnitude of each coefficient gives an indication of the sensitivity. In this example, the e1
z

coefficients are approximately 5 times larger than the remaining coefficients, indicating the permittivity
of cylinder 1 dominates the uncertainty in the electric field. Including higher order coefficients introduces
cross-correlation between the parameters, leading to more accurate estimates of the uncertainty in Ez.
Sobol indices can also be used for sensitivity analysis to quantify the contribution of each parameter
toward the overall uncertainty [22]. The Sobol indices for the set of inputs u can be expressed

Su =

∑
m∈Ku

(em
z )2

〈
Ψ2

m

〉
∑P

m=1(em
z )2 〈Ψ2

m〉
, (15)

where Ku is an index to the terms the basis functions that contain u [22].

 = 4 ± 0.8
σ = 0.05 ± 0.01

r = 8 ± 1.6
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Figure 2. Geometry considered for the TMz validation example. The uncertainty in εr and σ for each
cylinder is indicated.

Figure 3. Surface plot of the e0
z coefficient from the PCE-FDFD solution. The position of the cylinders

is indicated by - - -.
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(a) (b) (c)

(d) (e) (f)

Figure 4. Coefficients of the PCE-FDFD for an expansion truncated at D = 1: (a) εr, cylinder 1; (b)
σ, cylinder 1; (c) εr, cylinder 2; (d) σ, cylinder 2; (e) εr, cylinder 3; (f) σ, cylinder 3.

The PCE-FDFD solution can be used to extract statistics of the electric field [8]. Fig. 5(a) shows
the real part of electric field at 1.0GHz recorded along the line KK′ in Fig. 2. The field from 20 random
realisations of the material properties are overlaid in grey to qualitatively show the variability. The mean
electric field is computed using the PCE-FDFD method truncated at D = 1 and D = 2 and excellent
agreement is found for both when compared to 1000 Monte-Carlo trials. Similarly, Fig. 5(b) shows the
standard deviation in the electric field along KK′, and, consistent with Fig. 5(a), greater variation is
observed within the cylinders compared to the region outside. In this case, increasing D improves the
accuracy between the standard deviation calculated using the PCE-FDTD method and Monte-Carlo
simulations. Fig. 5(c) shows the normalised Sobol indices — indicating the relative contribution each
parameter makes toward the uncertainty, computed using (15) — for each of the six random parameters
along the line KK′ for the D = 2 PCE-FDFD results. Similar to the observations from Fig. 4, the
dominant source of uncertainty changes along KK′. For example: the uncertainty in the |Ez| field
outside the cylinders (0 m < y < 0.25m) is largely dominated by the permittivities of cylinder 1 and
2; within cylinder 2 (0.25m < y < 0.45m) the permittivity and conductivity of cylinder 2 dominate;
in the central region (0.45m < y < 0.55m) the permittivity and conductivity of cylinder 1 are more
significant; and similarly for y > 0.55m the material properties of cylinder 3 are observed to contribute
toward the uncertainty, while the contributions from cylinder 2 are reduced.

For the example presented, each Monte-Carlo trial takes approximately 7.3 s (on a 2.5GHz 32 core
Intel Xeon E7-8867 processor); for 1000 trials this is approximately 2 hours. In comparison the PCE-
FDFD method takes 60 s and 477 s for D = 1 and D = 2 respectively, representing a factor 15–120
reduction in the computation time. For this example 1000 Monte-Carlo trials are used to compare the
computational costs, as it was found this number produces a similar level of accuracy to the PCE-
FDFD method (when both are compared against 10,000 Monte-Carlo trials). It should also be noted
that for this example the PCE-FDFD method is faster than a stochastic-collocation approach, which
would require 85 simulations for an expansion truncated at D = 2 (using Gauss-Legendre quadrature
and Smolyak sparse grids) [18].
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Figure 5. (a) Ez field along KK′ for 20 random realisations, and the mean predicted using the PCE-
FDFD for D = 1 and D = 2 and 1000 Monte-Carlo trials. (b) Standard deviation in the Ez field along
KK′ using D = 1 and D = 2 and 1000 Monte-Carlo trials. (c) Normalised Sobol indicies for each
parameter along KK′ for D = 2.

4. PARAMETER ESTIMATION USING THE PCE-FDFD METHOD

In this paper we consider a limited parameter estimation problem where we do not have knowledge of
the material properties in Fig. 2 (the geometry is assumed to be known) and wish to estimate these
based on a limited set of samples of the electric field in the space exterior to cylinder 1. The set of
samples is given by Eobs

z |j∈J where j is the index and J samples are used. A standard FDFD method
is used to compute Eobs

z with the ‘true’ set of material properties.
Using Legendre polynomials in the PCE-FDFD method, we essentially ‘solve’ a forward problem

over the entire input parameter space spanned by the range of uncertainties. That is, the electric
field is expressed as a weighted summation of the basis functions in each of the material properties.
Accordingly, by comparing the PCE-FDFD solution to Eobs

z |j∈J at the same points we can determine
an estimate for the set of material properties. Formally, the objective function, E , representing the
difference between the observed fields Eobs

z at J locations in the mesh and the PCE-FDFD solution can
be written

E (ξ) =
∑

j∈J

∣∣∣∣∣
P∑

a=0

ea
z |jΨa (ξ)− Eobs

z |j
∣∣∣∣∣ . (16)

It should be noted that (16) is a function of the K random variables, ξ = {ξ1, ξ2, . . . , ξK}, over the
domain [−1,+1]K . Accordingly constrained minimisation (using the Matlab implementation of the
interior-point algorithm) can be used to find the values of ξ that minimise (16) and thus estimate the
material properties using (3) and (4).
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Figure 6 plots the percentage error between the six ‘true’ and estimated material properties
considered in Fig. 2, as the number of sample points is increased. The PCE-FDFD method truncated
at D = 2 and the error is averaged over 1000 random realisations. The sample points are evenly spaced
on a circle 0.15m from the surface of cylinder 1 (in the total field region). It is observed that the error
generally decreases as J increases from 5 to 20 sample points, with no significant improvement beyond
20 samples. For all material properties the error in the estimate is below 1.7% for ≥ 20 sample points.
It should be noted that only one run of the PCE-FDFD method is required to generate the a = 0, . . . , P
ea
z coefficients in (16).
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Figure 6. Error in the material parameters estimated using the PCE-FDFD method (D = 2) compared
to the ‘true’ solutions (averaged over 1000 trials) as the number of sample points is increased.

5. CONCLUSIONS

The polynomial chaos expansion is applied to the two-dimensional Helmholtz equation and discretised
using the FDFD method. A Galerkin procedure is used to recast the coupled equations into a matrix
form that can be solved using conventional techniques. The resulting PCE-FDFD method solves for
the uncertainty in the time-harmonic electric fields, which are expressed as an expansion of orthogonal
polynomial basis functions in the material properties. The statistics of the electric field at 1.0 GHz
for a scattering problem with uncertain dielectric properties are computed using the Monte-Carlo
method and compared with the PCE-FDFD solution. Good agreement is found when the expansion is
truncated at first-order terms; further improvement is observed by increasing the order of the expansion.
The reduction in the computational cost is approximately a factor 15–120. Estimates of the material
properties from exterior measurements were found by formulating an objective function and applying
constrained optimisation techniques. A maximum 1.7% error in the material properties was observed
for a test geometry with six unknowns and greater than 20 sample points.
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