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Abstract—The performance trade-offs of a SmallSat Synthetic
Aperture Radar (SAR) system for maritime surveillance in the
coastal waters of New Zealand are investigated. The lower costs of
SmallSat platforms allow for a constellation of SAR satellites that
can be launched from New Zealand using an existing local launch
service provider. The minimum SAR image quality necessary for
a SmallSat system to achieve a desired detection performance
is determined using existing X-band satellite data. The image
quality is specified in terms of Noise-Equivalent Sigma Zero
(NESZ) and resolution. It was found that for a resolution cell
of 4 m2 a system NESZ of −1.7 dB is sufficient to detect
small fishing vessels with a probability of detection of 0.5, while
maintaining the Probability of False Alarm below 10−10. These
requirements are translated into a preliminary SAR system
design.

I. INTRODUCTION

NEW ZEALAND is an emerging space-faring nation and
is currently developing satellite technology and missions

that provide tangible benefits to the country. These missions
can take advantage of national capabilities, including a launch
provider for small-satellites [1], ground stations [2], and a
growing aerospace sector [3]–[5].

The location of New Zealand in the South Pacific ocean
presents a significant challenge in reliably monitoring the
Exclusive Economic Zone (EEZ), which is approximately 4
million square kilometres [6]. The extent of the EEZ relative
to the New Zealand mainland is shown in Fig. 1. There are
strong economic and national security requirements to detect
and monitor Illegal, Unreported and Unregulated (IUU) fishing
vessels in the EEZ. The ships of interest are typically 30 m
in length and 7 m in width [7]. This size corresponds to a
small overseas trawler. Ships smaller than these dimensions
may occur in the EEZ, but will most likely not be an IUU
vessel of interest. This is because most illegal fishing activities
in New Zealand’s EEZ are conducted by foreign ships with
a port of call located several thousand kilometres away from
New Zealand. Ships smaller than 30 m× 7 m are unlikely to
make such a journey.

Detection is currently achieved via patrol ships and sporadic
flights by the New Zealand Defense Forces [8], however this
method only permits the identification of a small number of
illegal ships, and the cost to identify a single ship is significant.
This solution is not suitable for monitoring the entire EEZ,
as the majority of illegal ships are not detected. Accordingly,
space-borne remote sensing, such as Synthetic Aperture Radar
(SAR), is under consideration.

Fig. 1: The islands of New Zealand and surrounding ocean, in-
cluding the Exclusive Economic Zone outlined in red (adapted
from [6]).

SAR is an attractive solution, as it is capable of achieving
regular coverage independent of weather conditions. Due to
the small footprint size on the ground of typical SAR systems,
and the need for near real-time maritime surveillance, a group
(or constellation) of small SAR satellites is required. Each
satellite needs a SAR system optimized for detecting ships on
the ocean surface. Preliminary design principles for small SAR
systems have recently been proposed [9]. This work extends
these ideas by proposing a cost-effective SAR mission with
small satellites that benefits from a significant reduction of
the power demands for a specific application scenario.

The aim of the ship detection SAR system described in
this paper is to improve on the current situation, in which
almost all illegal ships are missed. Accordingly, constraints
on the probability of detection, Pd, for a dedicated small-
satellite SAR mission can be relaxed. In this paper, a minimum
Pd of 0.5 is deemed acceptable. Furthermore, a conservative
ship detection algorithm is used as the general problem of
ship detection is outside the scope of this paper, as is the
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task of designing a ship detection system capable of high-
fidelity detection in a wide variety of circumstances. For the
Probability of False Alarm (PFA), the assumption is made that
not more than two false alarms per whole coverage of New
Zealand’s EEZ are tolerable. This is to minimize the risk of
unnecessarily deploying expensive resources, such as spotting
aircraft or intercepting naval vessels. It is shown that this limit
on the number of false alarms leads to a maximum permissible
PFA of 1× 10−10.

In particular, this work identifies the minimum image re-
quirements for a SAR system in order to detect typical fishing
vessels with specified values for the PFA and probability
of detection. Monte-Carlo (MC) simulations are used to de-
termine the probability of detection Pd for different image
resolutions and different Noise-Equivalent Sigma Zero (NESZ)
values. The PFA is determined numerically by assuming that
pixels falsely exceeding a Constant False Alarm Rate (CFAR)
threshold are binomially distributed. Ambiguities are not con-
sidered explicitly, as ship targets are considered localized
scatterers. Therefore, ambiguities can be easily removed in
post-processing, as they are defocussed and the locations
are known [10]. In principle, the ambiguities could even be
used to confirm the detection results by identifying patterns
corresponding to the system’s expected ambiuity locations.

SAR systems on larger satellites have been widely used
for maritime surveillance; for example, both ERS-1 and
Seasat [11]. Images from the Canadian Radarsat-1 have also
been subject to various detection studies [12]–[14]. Similarly,
its successor Radarsat-2 is used for ship monitoring as part of
the Polar Epsilon project [15]. Another well known SAR mis-
sion is TerraSAR-X [16]. While these satellites have been used
for ship detection, this is not their primary mission objective.
In particular, the small number of satellites limits the revisit
time for maritime monitoring applications. However, recently,
commercial missions are beginning to employ formations of
multiple small-satellite platforms [17], [18]. The use of small,
lightweight and cost-effective platforms enables, in turn, the
launch of more platforms for a given budget and paves the
way for new mission design paradigms that are better suited
to address emerging challenges such as the quasi-continuous
monitoring of spatially limited areas.

The outline of the paper is as follows: Section II illustrates
how ship targets are modelled in the simulation process, and
describes the detection algorithm. Simplifying assumptions are
also explained. Section III shows how simulations are used to
derive requirements for the SAR image quality necessary to
detect ships for a specified probability of detection and PFA.
Section IV shows how these requirements can be translated
into a simple system design. Finally, Section V presents the
conclusions of the work.

II. METHODOLOGY

A. Statistical Properties of Ship Targets
A TanDEM-X [19] dataset has been analyzed with the

goal of determining the appropriate intensity distribution of
ship targets. In particular, the normalized target backscatter
coefficient σship is found, as this is necessary to determine the
maximum NESZ sufficient for target detection.

(a)

(b)

Fig. 2: TanDEM-X image used for statistical analysis of ship
targets: (a) original SAR image with target locations circled;
and (b) processed pixel map, black pixels belong to a target,
white pixels are clutter. The ECDF of the circled target is
shown in Fig. 3.

Fig. 2a shows the TanDEM-X image used for the analysis1.
The scene was acquired close to the port of Singapore,
and was chosen due to the variety of apparent target sizes.
The resolution of the image is 3 m× 3 m, the extent of the
scene is 6.5 km× 10.1 km, and the image has been calibrated
radiometrically. For visualisation, the intensities in Fig. 2a
have been scaled, such that the range of values is between
1 to 20 times the mean of the original image. The image
contains 58 targets of varying size. In order to determine the
intensity statistics for each target, a decision has to be made for
every pixel as to which target (or clutter) it belongs. This has
been obtained by applying a multi-stage threshold algorithm
to the original SAR image. The resulting pixel map is shown
in Fig. 2b.

In order to determine the distribution that best describes
ships in the TanDEM-X data, two distributions are fitted
to each target image: the Γ-distribution, according to the

1This dataset is taken from the EOWEB GeoPortal [20] and has HH-
polarization.
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Fig. 3: ECDF for the target circled in Fig. 2b, with fitted Γ
and log-normal distributions.

Swerling target models [21], and, as an alternative, the log-
normal distribution.

A common goodness-of-fit test is the Kolmogorov-Smirnov
(KS)-test [22]. The KS-test compares the Empirical Cumu-
lative Density Function (ECDF) obtained from the data with
the fitted Cumulative Density Function (CDF). Fig. 3 shows
the ECDF and fitted CDFs for both the Γ-distribution and the
log-normal distribution for the target circled in Fig. 2b, and
is typical of targets in this image. It is observed in Fig. 3
that the log-normal distribution describes the target data more
accurately than the Γ-distribution, as is indicated by the KS-
test: for the log-normal distribution the test statistic attains a
value of approximately 0.04, whereas for the Γ-distribution it
is 0.64. On average, the KS-statistic distribution for the entire
dataset is 0.05 for the log-normal distribution, and 0.63 for
the Γ-distribution.

The Probability Density Function (PDF) of the log-normal
distribution is [22]

fln(I) =
1

Iβ
√

2π
e−

(loge I−α)2

2β2 . (1)

The log-normal PDF is parameterized by the parameters α and
β, which can be interpreted as the mean and standard deviation
of the logarithm of the auxiliary data y = loge I , respectively,
where I denotes the pixel intensity. Estimates for α and β for
the 58 targets are shown in Fig. 4.

In Fig. 4 it is observed that neither α nor β depend strongly
on the target size N . Values for α and β can be used to
compute σship for each target,

σship = eα+β
2/2 . (2)

Fig. 5 shows the normalized backscatter coefficient σship
of the targets in Fig. 2 versus the target size in pixels. It is
observed that smaller targets tend to be less reflective than
larger ones. A target backscatter coefficient of σship = 2 dB
is assumed using the data in Fig. 5, as this is a conservative
estimate for targets smaller than N = 1, 000 pixels. This value
is based on the observation that in Fig. 5 more than 85 %
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Fig. 4: Estimates for α and β for each target as a function of
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Fig. 5: Normalized target backscatter coefficient σship versus
target size N in pixels. Each data point corresponds to one
target in Fig. 2.

of the targets have a normalized backscatter coefficient larger
than 2 dB.

B. Statistical Properties of Sea Clutter

It is important to know how the background pixels sur-
rounding a target are distributed in order to apply a conven-
tional CFAR ship detection algorithm [23]. Typically, radar
returns from sea clutter are assumed to be K-distributed in
the intensity domain [24]. However, this is computationally
expensive to invert. In this paper a simpler approach based on
experimental data is developed.

An analysis of TanDEM-X data reveals that the normalized
backscatter coefficient of the sea surface is approximately
−13 dB. Comparing this value to the target backscatter coeffi-
cient yields a Signal-to-Clutter Ratio (SCR) of 15 dB. There-
fore, the power of the clutter returns is significantly below the
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thermal noise level, such that the clutter can be neglected,
and that only thermal noise determines the distribution of
the background pixels. This assumption may be violated for
some acquisitions (e.g. in stormy conditions). The loss of
acquisitions during such harsh conditions is, however, tolerable
in view of the much less expensive system.

Using the radar equation and system parameters that could
be realised by a small-satellite SAR system with low transmit
power, it was found that the NESZ will be on the order of
−3 dB (cf. Section IV), resulting in a Clutter-to-Noise Ratio
(CNR) of −10 dB. Assuming that the I- and Q-components
of the noise follow a normal distribution, the intensity of the
background pixels are negative exponentially distributed if the
clutter is negligible [25].

The threshold T for a negative-exponentially distributed
Random Variable (RV) can be computed by inverting its CDF,
so that [22]

T = −1

ξ
loge PFA, goal , (3)

where PFA, goal is the desired PFA-value, ξ is the rate parameter
of negative exponential distribution.

The decision to neglect clutter is supported by Fig. 6, which
shows that the histogram of simulated SAR data with a CNR
of −7 dB can be described by the PDF of the negative expo-
nential distribution. The clutter is modelled as a Γ-distributed
random variable with a texture parameter equal to 1. The low
texture parameter indicates a high heterogeneity [25]. The low
value for the texture parameter results in spiky sea clutter,
which complicates ship detection due to the generally higher
number of clutter pixels exceeding the detection threshold (or
the noise floor, for the case presented), leading to more false
alarms [24]. Therefore, the results presented are also valid for
higher texture parameters or more homogeneous clutter.

Computing the CFAR threshold using (3) is computation-
ally much less expensive than numerically inverting the K-
distribution [26]. Therefore, neglecting the sea clutter signif-
icantly reduces the computational cost. It was found that the
maximum CNR where this assumption remains valid is −7 dB.
Similarly, a minimum NESZ of −6 dB is required when the
normalised clutter backscatter is −13 dB.

C. Ship Detection in Simulated Data
The detection algorithm used for determining PFA and Pd

differs from conventional ship detection algorithms in that a
distinction is made between detection at the pixel level and
detection at the object level.

The detection algorithm consists of two steps; first a CFAR
algorithm is used to identify pixels bright enough to exceed
a certain threshold [23]. This threshold is selected to yield a
desired PFA when applied to background pixels that do not
contain a target.

The detection algorithm used for the system requirement
analysis is not the focus of this paper, and accordingly is
less complex than conventional approaches. The detection
algorithm only serves to determine if detection with a small-
satellite SAR system is feasible.

In order to group the pixels exceeding the threshold T ,
a simple counting algorithm is employed: a window with
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the PDF of the exponential distribution fne(I) for ξ = 1.
The clutter is modelled as a Γ-distributed RV with a texture
parameter equal to 1.

dimensions adjusted to the smallest expected target size is
convolved with the CFAR pixel map. For each location of the
target window, a minimum number nmin of pixels exceeding
the threshold T have to be present for a target to be considered
present.

In each iteration of the MC simulation, as many pixels as
fit into a target detection box are simulated. The number N
of simulated pixels depends on the target size of interest and
the image resolution:

N =

⌈
LshipWship

δazδrg

⌉
, (4)

where Lship and Wship are the length and width of the ship
class of interest, and δaz and δrg are the image resolution in
azimuth and range, respectively.

The pixel intensity values must consist of exponentially
distributed noise intensities and log-normally distributed target
intensities. The generation of these samples can be expressed
as:

u =
∣∣∣
√
tejφ + n

∣∣∣
2

, (5)

where u represents the pixels used in the simulation, t stands
for the log-normally distributed target pixels in the intensity
domain, φ is the uniformly distributed phase of the target, and
n is complex Gaussian noise. In order to achieve an average
noise intensity of 1, n ∼ CN (0, 1), where CN (a, b) indicates
a complex Gaussian distribution with mean a and variance b.

In the case of no noise, n = 0, then u = t, which follows the
log-normal distribution by definition. If no target is present,
t = 0, then u = |n|2, which can be shown to follow the
exponential distribution [25].

For all simulations, target dimensions of Lship × Wship =
30 m× 7 m and an azimuth resolution of δaz = 2 m are
assumed. The range resolution δrg and the Signal-to-Noise
Ratio (SNR) are varied. To illustrate the simulated signal u, a
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Fig. 7: Contours for probability of detection Pd as a function
of the area of the resolution cell Ares and the NESZ. A system
is considered to comply with design requirements if it achieves
Pd ≥ 0.5; this contour is shown in bold.

range resolution of δrg = 2 m and a SNR of 6 dB are assumed.
Using (4), N = 52.

In the MC simulation, the signal u is generated M times; the
probability of detection Pd is then approximated by dividing
the number of targets exceeding the threshold nmin by the total
number of targets M . Thus, Pd can be found for specific values
of the CFAR-PFA (PFA, CFAR) and the object threshold nmin.
In order to specify these values, the desired PFA on object
level PFA, obj has to be determined. Once PFA, obj is fixed, the
survival function of the binomial distribution can be inverted
to determine the value of PFA,CFAR necessary to obtain the
desired PFA, obj for varying values of nmin:

P (X ≥ nmin) = 1−
nmin−1∑

i=0

(
N

i

)

× P iFA,CFAR (1− PFA, CFAR)
N−i

= PFA,obj. (6)

An analytical method of inverting (6) has not been found;
therefore, a numerical approximation has been implemented.

III. IMAGE QUALITY REQUIREMENTS

The simulated dependence of the probability of detection
Pd on the NESZ for different values of the resolution area
Ares is shown in Fig. 7. The simulations were conducted for a
desired PFA of PFA, goal = 1× 10−10. In the MC simulations a
resolution cell is either completely filled by a target or clutter.
This leads to a discretisation error for the Pd-values, which is
reduced using a Gaussian filter. For each individual data point
in Fig. 7, the combination of nmin and PFA, CFAR that yields the
highest value for Pd while keeping PFA, obj at the desired value
of PFA, goal has been selected. Fig. 7 shows that to achieve a
probability of detection of at least 0.5, a NESZ of more than
−5.5 dB is sufficient if the resolution cell is 10 m2 or less.

Fig. 8 shows how the requirements for NESZ and Ares
change if the constraints on PFA, goal are tightened or relaxed.
The desired value for Pd has been set to 0.5 and with a decreas-
ing PFA, goal the required NESZ also decreases as expected.
However, the difference in required NESZ for different values
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Fig. 8: Maximum NESZ necessary to achieve Pd = 0.5 versus
resolution area Ares for varying PFA, goal.

TABLE I: System Design Parameters

Parameter Symbol Value Units
Average transmit power Pavg 15 W
Wavelength λ 0.03 m
Antenna length La 4 m
Antenna width Wa 0.83 m
Antenna gain G 46.66 dB
Look angle γ 40 ◦

Orbit height H 500 km
Satellite velocity v 7100 ms−1

Noise temperature Ts 300 K
Noise figure F 5 dB
System losses L 5 dB
Rx bandwidth Br 100 & 140 MHz

of PFA, goal is only on the order of a few dB. This implies that
changing the number of false alarms by one or two orders of
magnitude does not significantly affect the system design in
terms of resolution or NESZ.

IV. PRELIMINARY SYSTEM DESIGN

This section explores how the relationship between maxi-
mum NESZ and resolution cell area can be translated into an
initial SAR-system design.

The NESZ is computed using the parameters in Tab. I by

NESZ =
256π3r3Br sin θivkTsFL

Pavg G2 λ3 c
, (7)

where c is the speed of light, θi the angle of incidence, and
r is the range from the satellite to ground. The range r and
the satellite altitude H are connected by the relationship H =
r cos θ. All other parameters are shown in Tab. I [10].

The desired object PFA is set to PFA, obj = 1× 10−10. It
can be shown that this value corresponds to approximately two
false object detections per complete coverage of the area of
interest (AEEZ ≈ 4× 106 km2): The number of target detection
windows Nwin present in the entire area of interest AEEZ can
be approximated by:

Nwin ≈
AEEZ

LshipWship
= 19.05× 109. (8)
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Fig. 9: NESZ versus ground range for system parameters
shown in Tab. I and two different bandwidths (Br = 100 MHz
and 140 MHz; the corresponding mean range resolutions are
δrg = 2.17 m and 1.55 m). The required NESZ (dashed
lines) for each bandwidth correspond to Pd = 0.5 and
PFA, goal = 1× 10−10. The plot shows the NESZ within the
3 dB beamwidth of the antenna beam on the ground. The
shaded area indicates NESZ values which do not comply with
the assumptions made for the simulations in Section III.

The required PFA to achieve NFA = 2 per whole coverage is
then PFA, obj = NFA/Nwin ≈ 1× 10−10.

The parameters in Tab. I were chosen because they can
reasonably be implemented on a small-satellite platform. In
particular, the SAR transmit power is low compared to typical
state-of-the-art SAR systems [19], due to the limited power
available from small solar panels. The look-angle γ and
the antenna width Wa have been optimized to give a 3 dB
beamwidth on the ground of at least 30 km.

The NESZ computed with (7) is plotted over the ground
range Rg in Fig. 9 for two different values of the bandwidth
Br, corresponding to two different range resolutions. It should
be noted that the NESZ requirements shown as dashed lines
in Fig. 9 are adjusted for the appropriate range resolution.
It is observed that for both bandwidths the system NESZ is
better than required over a ground range of almost 30 km.
As expected from (7), the NESZ falls off with decreasing Br.
This means that the system becomes more sensitive to radar
returns from weak scatterers, while simultaneously causing
the range resolution to become coarser. The dashed lines in
Fig. 9 show that the required NESZ also decreases when the
bandwidth is reduced. This is in agreement with Fig. 8, which
shows that for a coarser resolution a more sensitive system
is required to detect a target with the same probability Pd.
For both bandwidths, Fig. 9 shows that the ground range over
which the NESZ requirement is fulfilled is almost identical.

For Br = 100 MHz, the resulting NESZ curve is partially
below the −6 dB threshold derived in Sec. II. Therefore, the
NESZ values below the threshold may differ from what would
be obtained if the sea clutter was taken into account in the

simulations.

V. CONCLUSIONS

This paper focuses on the design of a small-satellite SAR
system for dedicated maritime surveillance in the New Zealand
EEZ. A methodology was developed to assess the impact of
ship detection requirement on the design of a SAR system.
A simplified situation and model were used to demonstrate
the process. Results apply only to this case, however, the
methodology can be applied to other cases.

Specifically, TanDEM-X data were analysed in order to
extract statistical models of ship targets. It was found that the
log-normal distribution is an appropriate fit for these targets.
It was also shown that for a CNR below −7 dB the sea clutter
contribution to the radar signal can be neglected. This was
shown by simulating heterogeneous sea clutter with additive
Gaussian noise. With the normalized target backscatter coeffi-
cient found from the data, the minimum NESZ for which the
assumption is valid is −6 dB.

To detect ships with dimensions 30 m× 7 m, a curve has
been computed that relates the maximum permissible NESZ
to the resolution for a desired probability of detection of 0.5
and PFA of 1× 10−10 (which represents two false alarms over
the entire EEZ). For example, with a resolution cell of 4 m2

the system NESZ must not exceed −1.7 dB, whereas at a
resolution of 8 m2, the maximum NESZ is −5.4 dB.

Future work will focus on a more detailed system design.
Various methods of improving the system performance will
be considered. For example, given that short revisit times are
crucial for maritime surveillance, a concept of operations for
a constellation of small satellites will be explored.
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