Concurrent Spectrum Sensing and Transmission for Cognitive Radio using Self-Interference Cancellation

Andrew Austin, Orion Afisiadis, Alexios Balatsoukas-Stimming, Andreas Burg

Spectrum-Sensing in Cognitive Radio

Secondary users (SU) can only sense for primary users (PU) while not transmitting

Blind-intervals: PU transmissions not detected by the SU until the next sensing period

Implementation on NI-USRP Platform

- Increases latency and causes interference to PU
- Reduces throughput: sensing more often increases overhead

Concurrent Spectrum Sensing and Transmission

Self-interference overwhelms the sensing-circuit

Solution: suppress SI using full-duplex RF and digital cancellation

 In principle, the transmitted signal is "known", so we can subtract the self-interference

No blind-interval: significantly reduces latency (decision made every sample) and increases throughput

Detecting the Primary User

Latency Analysis

Energy Detection: measure received energy → compare against threshold to determine if a PU is present

- Conventional spectrum-sensing: can only measure energy during short sensing intervals
- **Concurrent spectrum-sensing:** can use the entire frame as a sensing interval and make decisions every sample

Performance Evaluation for Concurrent Sensing

Noise and residual self-interference (RSI) limit performance
Concurrent sensing with low RSI → outperforms conventional

Conventional Sensing

Conventional spectrum sensing: average latency is approximately half the frame → due to blind-interval

For 32 sensing samples and a frame size of 512, the system is blind for 93.75% of the time

Average latency never less than 225 samples

Average latency independent of RSI

Latency always less than 4 samples

Telecommunications Circuits Laboratory

