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Efficient Analysis of Geometrical Uncertainty in the
FDTD Method using Polynomial Chaos with

Application to Microwave Circuits
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Abstract—A novel FDTD-based method is developed to analyze
three-dimensional microwave circuits with uncertain parameters,
such as variability and tolerances in the physical dimensions
and geometry introduced by manufacturing processes. The pro-
posed method incorporates geometrical variation into the FDTD
algorithm by appropriately parameterizing and distorting the
rectilinear and curvilinear computational lattices. Generalized
polynomial chaos is used to expand the time-domain electric and
magnetic fields in terms of orthogonal polynomial chaos basis
functions of the uncertain mesh parameters. The technique is
validated by modelling several microstrip circuits with uncertain
physical dimensions and geometry. The computed S-parameters
are compared against Monte Carlo simulations, and good agree-
ment for the statistics is observed over 0–25 GHz. A considerable
computational advantage over the Monte Carlo method is also
achieved.

Index Terms—FDTD, statistical modeling, microwave circuit
modeling, stochastic analysis, uncertainty

I. INTRODUCTION

COMPUTATIONAL electromagnetic techniques, such as
the Finite-Difference Time-Domain (FDTD) method, are

an important part of the computer-aided-design process for
many microwave structures and devices. However, uncertain-
ties, inherent in the problem (e.g. temperature fluctuations)
or introduced in the manufacturing processes, are difficult to
capture and characterize using existing computational tech-
niques [1], [2], [3]. Of particular interest is the analysis of
fabrication tolerances, which introduce randomness in the
physical dimensions and geometry [4], [1], [5, pp. 299–302].
These uncertainties ‘propagate’ through the circuit or device
to introduce uncertainty in the response and system outputs.
Quantifying the randomness in the circuit or device response
is an essential step in the design and validation process to
estimate the sensitivity of the predictions and for setting
realistic design margins [2], [6].

Analyzing a single realization of the circuit, at the nominal
values or otherwise, does not account for the uncertainties,
which can typically only be examined by collating multiple
results. The Monte Carlo method is widely used to quantify the
impacts of uncertainty and randomness in numerical models
and has been demonstrated to provide accurate results for
electromagnetic problems [7]. However, statistics computed
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via the Monte Carlo method tend to converge slowly—
for example, the mean converges at a rate proportional to

1p
M

, where M is the number of trials [8, pp. 8–9]. This
tends to limit the application of Monte Carlo methods for
computationally large or complex problems. Other methods,
such as perturbation with truncated series expansions can also
be used for sensitivity and uncertainty analysis. However,
perturbation is usually only valid for small changes in the
input parameters [9].

Recently, methods based on generalized polynomial chaos
have been proposed to more efficiently quantify large-scale un-
certainty in numerical models. The polynomial chaos method
is based on the orthogonal expansion of a second-order random
process in the space spanned by the random input parame-
ters [10]. The governing equations of the system are recast
using a Galerkin procedure, and while the computational costs
are increased, relative to the non-stochastic case, polynomial
chaos techniques typically converge significantly faster than
the Monte Carlo method [10]. The computational efficiency
depends on the number of random inputs and the underlying
complexity of the problem [10]. Furthermore, generalized
polynomial chaos can provide estimates for the statistics and
sensitivities from a single simulation run.

Non-intrusive methods such as stochastic collocation and
pseudospectral projection using the polynomial chaos ex-
pansion and sparse-grid integration [11, pp. 78–88] have
also been applied to estimate uncertainty in computational
electromagnetics, for example: periodic structures [12]; pas-
sive devices [13]; compatibility and interference [14], [15];
and indoor propagation [16]. However, non-intrusive meth-
ods require multiple deterministic simulations to estimate the
statistics; whereas generalized polynomial chaos using the
Galerkin method typically provides more accurate and efficient
solutions from a single simulation run [11, pp. 87–88].

Previous applications of generalized polynomial chaos for
microwave circuits have generally not focused on full-wave
simulation methods. These have examined the effects of sta-
tistical variability in the per-unit-length parameters for single-
and multi-conductor transmission lines using the telegrapher’s
equations and coupling from random external fields [2], [3].
FDTD-based implementations of the polynomial chaos method
have largely focused on the analysis of loaded resonant cavities
and free-space scattering problems [17], [18]. Generalized
polynomial chaos has also been applied to examine uncer-
tainty in other time-domain schemes, e.g. the discontinuous
Galerkin method [19]. In [18] randomness in the geome-
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try or dimensions was modelled by an uncertainty in the
material properties. While this method provides acceptable
results for dielectric interfaces, highly conducting or perfect
electrical conductor (PEC) boundaries result in numerical
instability [17]; and is thus unsuitable for the analysis of
manufacturing tolerances in typical microwave circuits.

This paper extends the novel approach outlined in [20] to
overcome these limitations by modelling randomness in the ge-
ometry as an uncertainty in the FDTD computational domain.
In [20] uncertainty was introduced by altering the rectilinear
cell spacing of the Yee lattice; in this paper we extend the
formulation to model arbitrary geometrical uncertainties using
a generalized curvilinear computational mesh. The system
of update equation is stable and can accurately characterize
uncertain PEC geometries, making the efficient FDTD analysis
of manufacturing tolerances in microwave circuits possible. A
brief overview of the polynomial chaos expansion (PCE) is
presented in section II; the new system of update equations
is also derived by expanding the time-domain electric and
magnetic fields in terms of the uncertain mesh parameters.
This approach is then extended to a wider range of uncertain
PEC geometries in section III. Numerical results for practical
microwave circuits are presented in section IV and validated
against Monte Carlo simulations.

II. MODELLING GEOMETRICAL UNCERTAINTY IN THE
FDTD METHOD WITH THE PCE

Due to random manufacturing tolerances (e.g. during
milling, etching or printing) individual realizations of a mi-
crowave circuit will have different, and uncertain, physical
geometry and dimensions [6], [1]. These uncertainties can be
expressed as random variables, characterized with appropriate
probability distributions. In this analysis it is assumed the
uncertainties are statistically independent; but these do not
have to be identically distributed.

A. The Polynomial Chaos Expansion
Randomness in the geometry and dimensions will introduce

uncertainty in the time-domain electric and magnetic fields
throughout the problem space [19]. The polynomial chaos
method expands these uncertain fields as a truncated sum-
mation of orthogonal basis functions,  a, in the N random
variables, ⇠ = {⇠1, ⇠2, . . . ⇠N} [10]. For example, the expan-
sion for the uncertain Ez field component in the FDTD method
can be written [19], [18]

Ez

��n
i,j,k+ 1

2
(⇠) =

PX

a=0

ea
z

��n
i,j,k+ 1

2
 a (⇠) , (1)

where ea
z

��n
i,j,k+ 1

2
are the weighting coefficients. The number

of terms is given by

P + 1 =
(N + D)!

N !D!
, (2)

where D is the highest polynomial order in the expansion.
The multivariate polynomial chaos basis functions can be
expressed

 a (⇠) =
NY

i=1

�ma
i
(⇠i) , (3)

where �ma
i
(⇠i) is a univariate orthogonal basis in ⇠i, and

ma
i is the multi-index corresponding to the order of the

expansion [11, pp. 64–67], for a = 0 . . . P . While any suitable
orthogonal functions may be used, it can be shown that the
optimal polynomial basis (providing exponential convergence),
� (⇠i), depends on the assumed distribution of random variable
⇠i [10]. This association is termed the Wiener-Askey scheme—
in which, Gaussian distributed inputs are associated with
Hermite polynomials and uniformly distributed inputs with
Legendre polynomials [10]. In cases where the input parameter
distributions are difficult to determine (or unknown), uniform
or Gaussian probability density functions (PDFs) are often
assumed [11, pp. 44–46]. However, for geometrical uncertain-
ties, the infinite limits of the Gaussian distribution are non-
physical. This paper uses the approach proposed by Xiu [10],
where Gaussian random variables are approximated by the
Beta distribution, which has finite support; Jacobi polynomials
are then used as the basis functions. The resulting multivariate
basis functions are orthogonal with respect to the PDFs over
⌦, with an inner product given by

h a (⇠) , b (⇠)i =

Z

⌦
 a (⇠) b (⇠) w (⇠) d⇠

=
⌦
 2

a (⇠)
↵
�a,b. (4)

For Legendre polynomials, w = 0.5N with ⌦ 2 [�1, 1]N ;
while for Jacobi polynomials, w =

QN
i=1(1 � ⇠i)↵(1 + ⇠i)�

with ⌦ 2 [�1, 1]N ; ↵ = � = 3 was used to provide an
acceptable approximation [11, pp. 113–115]

B. Modelling Geometrical Uncertainties

In general, an objects’ physical dimension, d, in an arbitrary
planar geometry can be modelled in the FDTD method by
d = n�, where � is the nominal lattice dimension, and n is
the number of Yee cells (subcell techniques can be used when
d is not an integer multiple of �). Uncertainty in the length of
d can be modelled by making n a random variable, keeping
� constant [19], [18]. This process spatially distributes the
uncertainty over several cells in the computational lattice
around the nominal boundary. The PCE can be applied to each
field component in these regions by translating the geometrical
uncertainty into an uncertainty in the material properties
(e.g. permittivity and conductivity) [19], [18]. However, this
approach is only feasible for uncertainty in the dimensions
of low-contrast dielectric materials. Highly conducting or
PEC materials introduce large spurious reflections along the
spatially distributed boundary, resulting in numerical instabil-
ity [17, pp. 208–213].

By contrast, in this analysis, randomness in the phys-
ical dimensions and geometry are incorporated into the
FDTD method by introducing uncertainty in �. For example,
Fig. 1(a) shows a PEC corner, where uncertainties in the
planar geometry—denoted by ⇠1 and ⇠2, and indicated by
the hatched regions—exist in both the x̂ and ŷ directions
and extend over several Yee lattice cells. By appropriately
expanding and compressing the dimensions of the mesh cells,
as depicted in Fig. 1(b), randomness in the position of the
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Fig. 1. Due to fabrication tolerances uncertainty is assumed to exist in the
physical dimensions and geometry. For example, (a) shows the nominal lattice
for a PEC corner with the hatched regions representing the uncertainty, ⇠1
and ⇠2 in the x and y directions respectively; while (b) depicts one realization
formed by distorting the dimensions of the Yee lattice cells.

PEC boundaries can be realized in the FDTD computational
domain. For example, the uncertainty in �x2 is given by

�x2(⇠1) =
�xmax +�xmin

2
+
�xmax ��xmin

2
⇠1, (5)

where ⇠1 is a uniform or Beta distributed random variable over
the interval �1  ⇠1  1, and �xmin and �xmax represent the
minimum and maximum values of the lattice spacing required
to achieve the desired uncertainty. It is important to note that
while the physical dimensions have changed, the ‘computa-
tional dimensions’ of the geometry have not been altered,
allowing this approach to handle PEC boundaries. Equation (1)
can then be applied to express each uncertain time-domain
electric and magnetic field component as a function of ⇠1 and
⇠2.

The uncertainty in the lattice spacing is distributed over a
region, and similar local refinements of the cell spacing in
the Yee lattice to align it with physical objects has previously
been shown to be second order accurate [21, pp. 464–471].
Distorting the Yee lattice is suitable when the geometrical
uncertainties can be aligned with the rectilinear mesh. While
a large class of planar microwave circuits can be analyzed
accordingly, this restriction is relaxed in section III, which
allows for more general geometrical uncertainties by utilizing
curvilinear grids.

C. Derivation of PCE-FDTD Update Equations

The expansion outlined in (1) separates the randomness
in the field components from the dependence on time and
position [18]. Similar expressions can be formulated for
the remaining electric and magnetic field components and
substituted into the FDTD update equations along with (5).
The resulting expansion for the Ez field component can be

expressed as
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Applying a Galerkin procedure by taking inner products with
the test function  b(⇠), where b = 0, . . . P , and using the
orthogonality condition from (4), reduces (6) to
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(7)

Similar update equations can be derived for the remaining E
and H field components. Solving the b = 0, . . . P coupled set
of update equations for the PCE coefficients yields the uncer-
tainty in the time-domain fields throughout the lattice (1). To
ensure numerical stability, the time-step is reduced to account
for the smallest possible cell dimension in the distorted lattice.
The convolutional implementation of the complex frequency
shifted tensor perfectly matched layer (CPML) is used in this
analysis to simulate propagation in unbounded media [21, pp.
294–297]. The two additional auxiliary variables for each field
component in the CPML are expanded using the PCE, similar
to (5)–(7).

The inner products can be precomputed using numerical in-
tegration before time-stepping commences [22]. Furthermore,
for regions outside the distorted lattice, the inner products
in (7) reduce to Kronecker delta functions, and thus the update
equations can be decoupled and solved for b = 0, . . . P inde-
pendently. The computational resources required to solve (7)
are increased relative to the non-stochastic case. In general,
the PCE increases memory consumption by a factor P + 1
and run times proportional to (P + 1)2 [10], [18].

D. Estimating Response Statistics
Statistics of the fields can be readily calculated from the

PCE solution; for example, the mean and variance for a Ez

field component are given by [11, p. 67]

µ [Ez (⇠)] = e0
z, (8)

�2 [Ez (⇠)] =
PX

a=1

(ea
z)2

⌦
 2

a

↵
. (9)

The PDFs can be estimated by running a Monte Carlo analysis
on the PCE for the fields. The global sensitivity can be esti-
mated using the Sobol decomposition of the polynomial chaos
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expansion [23]. This yields a set of conditional variances,
indicating the relative contribution each combination of input
parameters makes toward the uncertainty in the response. The
Sobol indices for the set of inputs u can be expressed

Su =

P
m2Ku

(em
z )2

⌦
 2

m

↵

PP
m=1(e

m
z )2 h 2

mi
, (10)

where Ku is an index to the terms in (1) that contain u [23].
Solving (7) yields the uncertainty in the time-domain fields

throughout the lattice, however we are often more interested
in characterizing the uncertainty in the frequency-domain S-
parameters. These can be found by projecting the Fourier
transform of the uncertain time-domain signals (recorded at
appropriate ports) onto the basis functions. For example,

��Sb
21

��,
for b = 0, . . . P , is given by

��Sb
21(!)

�� =

*�����

PP
a=0 F{va

2 (t)} a (⇠)
PP

a=0 F{va
1 (t)} a (⇠)

����� , b (⇠)

+
(11)

where F{va
n(t)} is the Fourier transform of the ath coeffi-

cient in the uncertain time-domain signal recorded at port n.
Equation (11) can be solved using numerical cubature, and the
statistics and sensitivity for the S-parameters can be found by
applying (8)–(10).

III. LOCAL MESH DISTORTION

The method outlined in the previous section—namely, glob-
ally distorting the cell spacing of the rectilinear Yee mesh—
cannot be used when the uncertainties in the physical geometry
are aligned but statistically independent. For example, Fig. 2
shows a microstrip filter where uncertainties in the (nominally
equal, and thus geometrically aligned) stub lengths L1..3

are statistically independent. In this and similar such cases,
randomness in the physical geometry can be incorporated into
the FDTD method by introducing uncertainty in the local
computational mesh. To accomplish this, a curvilinear FDTD
mesh is defined around each uncertain portion of the geometry
and parameterized in terms of the random variables. Fig. 2
shows how three local curvilinear computational meshes can
be distorted to achieve the desired (independent) uncertainties
in L1..3. A brief derivation for the curvilinear FDTD up-
date equations expanded using generalized polynomial chaos
follows—for the general case, where the curvilinear mesh is
parameterized by N random variables, ⇠ = {⇠1, . . . ⇠N}.

A. Application of Polynomial Chaos to Curvilinear FDTD
Uncertainty in the curvilinear computational mesh will

introduce uncertainty in the time-domain co- and contravariant
electric and magnetic field components. The polynomial chaos
expansion can then be applied to each field component, for
example, the uncertain contravariant E1 fields can be expanded
in terms of ⇠,

E1 (i, j, k, n, ⇠) =
PX

a=0

ae1
��n
i,j,k

 a (⇠) (12)

where ae1 are the expansion coefficients, and  (⇠) is given
by (3). Similar expressions can be derived for the remaining

L1(⇠1) L2(⇠2) L3(⇠3)

d1(⇠4) d2(⇠5)

Fig. 2. The length of each nominally equal stub, L1..3, depends on the
independent random variables, ⇠1..3, which are characterized by appropriate
PDFs. The local curvilinear mesh surrounding each stub is parameterized in
terms of ⇠1..3. The polynomial chaos method is then used to expand the
time-domain electric and magnetic fields in terms of the curvilinear mesh-
distortion parameters. Uncertainty in d1..2 can be incorporated using the
approach outlined in section II.

co- and contravariant electric and magnetic field components.
Equation (12) can be substituted into the curvilinear FDTD
update equation for the E1 component [24], resulting in
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In (13) V (⇠)
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i,j,k
is the volume of the {i, j, k} cell in the

uncertain curvilinear FDTD mesh (defined for contravariant
E1 field), and
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are the coefficients due to uncertainty in the material proper-
ties [18]. A Galerkin procedure is applied for b = 0, . . . P ,
reducing (13) to
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Similar expressions can be derived for the remaining con-
travariant electric and magnetic field components. The co-
variant field components are computed by projecting the con-
travariant field components onto the curvilinear mesh. Spatial
averaging is required as the components are not collocated.
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The update expression for the coefficients of the uncertain
covariant be1 field is thus given by
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where gE
11 (⇠), gE

12 (⇠) and gE
13 (⇠) are the projection vectors

for the curvilinear E-mesh in the presence of uncertainty.
The computation of these quantities is briefly outlined in
Appendix A. Similar to the analysis in section II, the inner
products in (14) and (15) are precomputed, however, unlike (7)
these must be stored for each cell in the curvilinear mesh. The
storage requirements for the inner products grow proportional
to (P +1)2, but in practice these can be substantially reduced
by using a hash table. Outside the curvilinear mesh, there is
no uncertainty in the volume or projection vectors, and thus
the inner products in (14) and (15) reduce to Kronecker delta
functions, and the b = 0, . . . P update equations are decoupled.

B. Numerical Stability
The stability condition of a general non-orthogonal explicit

FDTD update scheme is given by [21, pp. 485–486]

�t  1

c sup

✓qP3
l=1

P3
m=1 gl,m

◆ , (16)

where sup denotes the maximum value throughout the curvi-
linear mesh, c is the velocity of propagation and gl,m is the
inverse metric [21, pp. 481–482]. The update equation for each
coefficient in the PCE-FDTD scheme (14) can be considered
a weighted summation of P + 1 non-stochastic curvilinear
FDTD update equations over the range of mesh distortions
and lattice cell dimensions. Thus the stable time step for (14)
can be set using (16), given the maximum uncertainty in the
computational mesh. No late time instabilities were observed
in any of the examples considered, or in test cases run for
1 ⇥ 105 time steps. All Monte-Carlo simulations were also
run using the same time step to ensure fair comparisons.

IV. NUMERICAL RESULTS

A. Low Pass Microstrip Filter
Fig. 3 shows a microstrip implementation of a 5.6 GHz

low pass filter, with three uncertain dimensions identified,
{d1, d2, d3}. The FDTD computational lattice is 130⇥100⇥36
cells in size (including the CPML), and the nominal cell
dimensions are: �x = 0.4064 mm; �y = 0.4233 mm and
�z = 0.265 mm [25]. The filter is excited at port 1 using
a modulated Gaussian pulse with a 10 GHz centre frequency
and solved to 4000 time steps. The Monte Carlo method is

5

The update expression for the coefficients of the uncertain
covariant be1 field is thus given by
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where gE
11 (⇠), gE

12 (⇠) and gE
13 (⇠) are the projection vectors

for the curvilinear E-mesh in the presence of uncertainty.
The computation of these quantities is briefly outlined in
Appendix A. Similar to the analysis in section II, the inner
products in (14) and (15) are precomputed, however, unlike (7)
these must be stored for each cell in the curvilinear mesh. The
storage requirements for the inner products grow proportional
to (P +1)2, but in practice these can be substantially reduced
by using a hash table. Outside the curvilinear mesh, there is
no uncertainty in the volume or projection vectors, and thus
the inner products in (14) and (15) reduce to Kronecker delta
functions, and the b = 0, . . . P update equations are decoupled.

B. Numerical Stability
The stability condition of a general non-orthogonal explicit

FDTD update scheme is given by [21, pp. 485–486]

�t  1

c sup

✓qP3
l=1

P3
m=1 gl,m

◆ , (16)

where sup denotes the maximum value throughout the curvi-
linear mesh, c is the velocity of propagation and gl,m is the
inverse metric [21, pp. 481–482]. The update equation for each
coefficient in the PCE-FDTD scheme (14) can be considered
a weighted summation of P + 1 non-stochastic curvilinear
FDTD update equations over the range of mesh distortions
and lattice cell dimensions. Thus the stable time step for (14)
can be set using (16), given the maximum uncertainty in the
computational mesh. No late time instabilities were observed
in any of the examples considered, or in test cases run for
1 ⇥ 105 time steps. All Monte-Carlo simulations were also
run using the same time step to ensure fair comparisons.

IV. NUMERICAL RESULTS

A. Low Pass Microstrip Filter
Fig. 3 shows a microstrip implementation of a 5.6 GHz

low pass filter, with three uncertain dimensions identified,
{d1, d2, d3}. The FDTD computational lattice is 130⇥100⇥36
cells in size (including the CPML), and the nominal cell
dimensions are: �x = 0.4064 mm; �y = 0.4233 mm and
�z = 0.265 mm [25]. The filter is excited at port 1 using
a modulated Gaussian pulse with a 10 GHz centre frequency
and solved to 4000 time steps. The Monte Carlo method is
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Fig. 3. Microstrip implementation of a low pass filter with uncertain dimen-
sions: d1 = 5.69±0.5 mm; d2 = 5.69±0.5 mm; and d3 = 4.064±1.0 mm.
Other dimensions are assumed to remain constant.
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Fig. 4. Magnitude of filter S21 for 25 samples drawn from the Monte Carlo
simulations. Each grey line represents one FDTD simulation with a particular
set of input parameters (stub lengths). The 6-dB roll-off frequency is observed
to vary with the stub lengths.

applied by generating a set of 1000 uniformly distributed
random dimensions, appropriately scaling the lattice spacing,
and solving each realization of the circuit independently. Fig. 4
shows the magnitude of the filter S21 for 25 realizations
of the random stub lengths over a 0–20 GHz frequency
range. Changes to the stub lengths alters the frequency-domain
response of the filter, including the magnitude of the ripple in
the pass- and stop-bands and the roll-off. Fig. 5(a) shows the
mean S21 magnitude computed using Monte Carlo simulations
and the FDTD-PCE formulation outlined in section II-C. The
corresponding standard deviation about the mean values is
shown in Fig. 5(b). The standard deviation is observed to
increase in the roll-off regions of the filter response, indicating
an increased degree of uncertainty exists in the results at these
points.

The polynomial chaos expansion is truncated at order D =
{1, 2, 3}, and the time-domain em

z field terms (recorded at
ports 1 and 2) are projected into the frequency-domain via (11)
to determine the uncertainty in the S-parameter statistics.
As shown in Fig. 5(a), the mean is well predicted across
the entire frequency range, and the convergence against the
Monte Carlo results improves with increasing D. However,
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Fig. 5. Comparison of the (a) Mean and (b) Standard deviation in |S21|
computed using 1000 Monte Carlo (MC) trials and via polynomial chaos
expansions (PCE).

Monte Carlo results improves with increasing D. However,
small deviations in the prediction of the mean occur beyond
18 GHz. Similar effects are observed in the prediction of the
standard deviation beyond 10 GHz. The differences between
the polynomial chaos results and Monte Carlo simulations
arise from two effects. Firstly, higher statistical moments, such
as the standard deviation and kurtosis, generally require higher
order polynomial terms to converge to the same level of error
in the mean prediction [10]. Secondly, at higher frequencies
the change in the electrical lengths of the stubs is larger,
causing increased uncertainty, which requires higher order
polynomial terms to converge—this effect is also observed in
the subset of Monte Carlo simulations shown in Fig. 4.

Fig. 6(a) shows PDFs of the 6 dB filter roll-off frequency
estimated from 1000 Monte Carlo trials and via the polynomial
chaos expansions. Accurate models for the expected spread
are important to assess the sensitivity of the predictions, and
can provide a measure of confidence in simulated results. The
shape of the PDF converges as the order of expansion increases
and generally compares well with the Monte Carlo results.
While 1000 Monte Carlo trials are sufficient to capture the
statistics around the mean, further trials would be required
to improve accuracy in the tails of the distribution. Fig. 6(b)
shows the relative contribution of each stub length to the
uncertainty in |S21| computed via (10). The uncertainty in
the pass band ripple is dominated by d3, the stub separation;
whereas in the transition regions and the stop band, the lengths
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Fig. 6. (a) Probability density functions of the low pass filter 6 dB roll-
off point computed using 1000 Monte Carlo trials and via polynomial chaos
expansions. (b) Relative contribution of each stub length to the uncertainty in
|S21| computed using the D = 3 expansion.

of the stubs have greater impact. This analysis is valuable as
it indicates which parameters should be targeted to have the
greatest reduction in the variability of the response.

The simulation time for each Monte Carlo trial is approx-
imately 4 minutes (on a 3.3 GHz Intel i3 processor); 1000
trials thus take 2.5 days. By comparison, the polynomial
chaos method requires approximately 8, 23 and 58 minutes for
D = 1–3 respectively. The additional overhead in computing
the inner products and post processing the results is small
compared the FDTD run-times.

B. Cascaded Stub Line Filter

The curvilinear PCE-FDTD method is applied to estimate
the response statistics for the lowpass cascaded stub line filter
shown in Fig. 2. Two and four stub designs are considered for
a 6 GHz operating frequency. Due to fabrication tolerances,
uncertainty exists in the stub lengths, L, and separation, d.
The nominal dimensions are d = 15 mm and L = 12.5 mm,
and the uncertainties are assumed to be Beta distributed with
standard deviation, � = 0.167 mm and limits ±0.5 mm. The
rectilinear parent mesh is 85 ⇥ 65 ⇥ 30 cells in size (and
terminated in a 10 cell thick CPML), while the curvilinear
sub-meshes are 26 ⇥ 26 ⇥ 26 and defined around the stubs.
Covariant components on the boundaries on the curvilinear
mesh are aligned with appropriate field components in the
rectilinear lattice and are exchanged at each time step. The
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Fig. 7. Mean and 90% confidence intervals of |S21| in dB units for the
cascaded stub line filter computed using the PCE truncated at D = 3,
and 1000 Monte Carlo (MC) trials. (a) Two-stub filter with Beta distributed
uncertainties, � = 0.167 mm in L1, L2 and d1; and (b) four-stub filter with
� = 0.167 mm in L1–L4.

nominal cell is 0.25 mm3, and the smallest cell dimensions in
the rectilinear mesh distortion region are used to set the stable
time-step; in this case �t = 0.238 ps.

Fig. 7(a) shows estimates of the mean |S21| and 90%
confidence intervals for the two-stub filter computed via the
PCE truncated at D = 3 and 1000 Monte Carlo trials; the
close agreement over 3–9 GHz demonstrates the validity of the
polynomial chaos approach. The limits of the 90% confidence
interval are found from the PDFs, such that 5% of the data are
expected to fall outside upper and lower bounds respectively.
In the passband there is little deviation from the mean |S21|,
indicating the design is relatively insensitive to the fabrication
uncertainty. However, in the transition region and stopband
the 90% confidence interval is observed to increase with
frequency. Random displacement of the open circuited stubs
alters the input impedance, shifting the resonant frequency of
the structure and thereby introducing uncertainty in the filter
roll-off characteristics.

Sharper roll-off can be achieved by using additional stubs—
e.g. Fig. 7(b) shows |S21| for a four stub structure with greater
attenuation at the expense of increased ripple in the passband.
However, relative to the two stub case, the uncertainty in the
filter characteristics is observed to increase. The filter elements
are cascaded and thus uncertainty introduced at each stage
will accumulate. A greater deviation between the statistics
computed with the PCE and Monte Carlo simulations is also
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Fig. 8. (a) Curvilinear FDTD mesh for a microstrip implementation of a 20 dB
10–20 GHz directional coupler with uncertain separation between the coupled
lines (dimensions are not drawn to scale); (b) Mean and 95% confidence
intervals for the coupling, |S13|, and isolation, |S14|, computed using 1000
Monte Carlo trials and the curvilinear PCE-FDTD truncated at D = 4.

observed. The PCE can be interpreted as a interpolation in the
random space spanned by the input parameters. Depending on
the complexity of the interactions between the filter elements
higher order terms may be required to achieve convergence.
Nonetheless, the results shown in Fig. 7(b) provide a good
approximation to the actual statistics, given the reduction in
computational costs (approximately 12 hours for the single
PCE simulation; and 150 hours for 1000 Monte Carlo trials).

C. Directional Coupler

Fig. 8(a) shows a microstrip implementation of a 20 dB
directional coupler designed to operate over 10–20 GHz [26,
pp. 390–392]. The thickness of the ✏r = 2.2 substrate is
5 mil (1 mil = 25.4 µm) and the corners of the lines are
mitred to minimize reflections. Due to fabrication tolerances,
uncertainty exists in the orientation and separation of the
coupled lines. The random deviation of each line from the
nominal (parallel) configuration is statistically independent
and assumed to be uniformly distributed between 3.75–6.25
mil, with a nominal separation of 5 mil. The other dimensions
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are assumed to remain constant. Similar to the cascaded stub
filter described in section IV-B, a curvilinear FDTD mesh is
defined around each coupled line and parameterized in terms
of the random deviations. The circuit is excited with a 15 GHz
modulated Gaussian pulse at port 1 (the remaining ports are
terminated in the PML), and the uncertainty in the response is
estimated using the curvilinear PCE-FDTD method outlined
in section III.

Input signals from port 1 are coupled into port 3, while
being isolated from port 4. Fig. 8(b) show statistics for the
coupling, |S13|, and isolation, |S14| estimated from 1000
Monte Carlo trials and the curvilinear PCE-FDTD truncated at
order D = 4; good agreement is found across the 5–25 GHz
frequency range. Randomness in the relative separation and
orientation of the coupled lines alters their even and odd mode
capacitance and characteristic impedance and thereby intro-
duces uncertainty in the coupling and isolation. For example,
at 15 GHz the 95% of the data is expected to fall between
�18.5 dB and �20.2 dB. By contrast, the relative uncertainty
in the isolation is considerably larger, particularly at lower
frequencies. The time required to simulate this circuit with
the fields expanded to D = 4 is 4.5 hours, while 1000 Monte
Carlo trials take approximately 7 days.

V. CONCLUSIONS

Randomness in the physical dimensions of microwave
circuits—for example, fabrication tolerances introduced during
the milling or etching process—induces randomness and un-
certainty in their response. Characterizing the sensitivities and
uncertainties using numerical simulation tools is advantageous,
but often requires excessive computational resources, e.g.
Monte Carlo sampling. This paper develops novel FDTD-
based algorithms to model uncertainties in the physical ge-
ometry and dimensions by expanding the time-domain fields
using orthogonal polynomial chaos basis functions. The geo-
metrical uncertainties are parameterized and incorporated into
the FDTD method by appropriately distorting the rectilinear or
curvilinear computational mesh. The resulting coupled system
of update equations is solved to estimate the statistics and
sensitivities of the time-domain fields (and S-parameters)
from a single simulation run. The methods are validated by
examining uncertainty in the dimensions of two microstrip
filters. The statistics of the solutions agree closely with Monte
Carlo results over the range of operating frequencies and are
achieved at significantly lower computational cost.

APPENDIX A
CURVILINEAR MESH WITH UNCERTAINTY

Fig. 9 shows the E-field unit cell for a three-dimensional
curvilinear FDTD lattice; the dual H-field mesh is defined
by connecting the circumcentres of the E cells. The unitary
vectors are given by A1, A2 and A3, which are aligned with
the co-variant E fields. The g-metrics used in (15) are given
by

gE
n,m

��
i,j,k

= AE
n

��
i,j,k

· AE
m

��
i,j,k

. (17)
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Fig. 9. Unit cell for the curvilinear E mesh, with the unitary vectors identified.
The connectivity mesh remains rectilinear, and cells are appropriately distorted
to account for the geometrical uncertainties.

While the volume associated with the contravariant E1 field
component is given by [27, pp. 52–53]
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where AE and AH are the unitary vectors for the E and H
lattices respectively. Similar expressions can be derived for
the volumes of the remaining E and H field components.
The FDTD update equations for the co- and contravariant
components (in the absence of uncertainty) can be derived
from the expansion of the field in terms of the unitary and
reciprocal mesh vectors [21, pp. 480–486].

Uncertainty in the g-metrics and volumes is introduced by
appropriately distorting the lattice coordinates to align the
mesh with particular realizations of the random dimensions
and geometry. It should be noted that the inner products
in (13)–(15) are computed using numerical quadrature, there-
fore, it is not necessary to obtain closed form expressions
for (17) or (18) in terms of the distortions.
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