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Abstract—A non-intrusive formulation of the polynomial chaos
method is applied to quantify the uncertainties in deterministic
models of the indoor radio channel. Deterministic models based
on the Finite-Difference Time-Domain (FDTD) method and ray
tracing are examined. Various sources of parameter uncertainty
are considered, including randomness in the material properties,
building geometry, and the spatial location of transmitting and
receiving antennas. The polynomial chaos results are confirmed
against Monte Carlo simulations and experimental measure-
ments. The analysis shows the expected variation in the sector-
averaged path loss can be considerable for relatively small input
parameter uncertainties, leading to the conclusion that a single
simulation run using ‘nominal values’ may be insufficient to
adequately characterize the indoor radio channel.

I. I NTRODUCTION

UNDERSTANDING the propagation characteristics of the
radio channel is essential to predict the performance of

modern wireless systems operating in outdoor environments
and within buildings [1]. Consequently there has been in-
creased interest in developing site-specific models for indoor
environments using deterministic methods with a rigorous
electromagnetic basis. For example, ray-tracing (e.g. [2], [3])
and time-domain methods (e.g. [4]–[7]) have been applied to
model radio wave propagation within buildings. Most deter-
ministic models require a detailed characterization of theinter-
nal environment, particularly the geometry and corresponding
dielectric properties.

However, considerable uncertainty can exist in the descrip-
tion of the environment. The dielectric properties of typical
building materials are difficult to measurein situ, and nominal
values from tabulated experimental data (e.g. [8], [9]) are
often used [3], [7]. Changes in the atmospheric moisture
content, variability in the manufacturing processes, or other
random factors will introduce uncertainty in the values of the
relative permittivity and electrical conductivity. Uncertainty
in the geometry can arise as detailed floor plans are usually
not available for older buildings, and must be reconstructed
from physical measurements, or converted from blue-prints.
Furthermore, even if detailed architectural drawings are avail-
able, uncertainty often remains as construction tolerances and
later modifications may not be recorded. The uncertainty in
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the materials and building layout can be expressed as random
variables—characterized by appropriate probability density
functions (PDFs)—with the actual geometry and dielectric
properties viewed as a particular realization [10, pp. 1–3]. The
randomness in the input parameters ‘propagates’ through the
deterministic channel models and introduces uncertainty in the
results [11, pp. 6–7]. The size of this output uncertainty is
related to the uncertainties in the input and how these interact
with the model. A single simulation run (at the nominal values
or otherwise) does not account for the uncertainties, whichcan
typically only be examined by collating multiple results.

Previous investigations have shown ray-tracing or FDTD
models of the radio channel can be highly dependent on the
building geometry and dielectric properties [3], [4], [7].For
example, Wanget. al, and later Athanasiadouet. al, identified
many of the key factors influencing the sensitivity of outdoor
ray-tracing models [12], [13]. However, these findings were
based on sweeping each parameter over a range of values to fit
the simulated results against measurements. This paper focuses
on the inverse problem, namely “what is the expected variation
in the predictions when the inputs are uncertain?”. While this
problem has not been examined in detail for either FDTD or
ray-tracing models of the indoor channel, such an analysis is
important to assess the sensitivity of the predictions and can
give a measure of confidence in the simulated results. This
is particularly relevant when using such models to plan or
optimize wireless system deployments, where no (or limited)
experimental data is available.

The Monte Carlo method is widely used to quantify the
impacts of uncertainty and randomness in numerical models
with multiple inputs, as the size of the parameter space
increases exponentially with the number of independent ran-
dom variables considered; e.g. forN independent inputs the
parameter space spansN dimensions, and cannot be fully
explored by considering each input independently. In the
Monte Carlo method a large number of random inputs are
generated based on prescribed (or assumed) probability distri-
butions, and the model is solved for each realization. Statistical
information, such as the mean and variance are found by
appropriately collating the random solutions [11, pp. 8–9].
The Monte Carlo method has been demonstrated to provide
accurate results for electromagnetic problems [14]. However,
the slow rate of convergence generally limits its applicability
for computationally large problems, such as deterministic
channel modelling. For example, the mean value converges
as 1√

M
, whereM is the number of realizations [11, pp. 8–9].

Despite the computational limitations, the Monte Carlo method
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remains widely used as it is simple to apply and convergence is
independent of dimensionality [11, p. 9]. Other methods, such
as perturbation can also be used for sensitivity and uncertainty
analysis. However, perturbation is usually only valid for small
changes in the inputs.

More recently, methods based on generalized polynomial
chaos—an extension of the homogeneous chaos introduced by
Wiener [15]—have been developed to quantify uncertainty in
numerical models [10], [16]. The polynomial chaos method
approximates quantities in a stochastic process as the finite
summation of orthogonal basis polynomials in the random
input parameter space. The resulting polynomial expansion
thus provides a surrogate model for the underlying system,
i.e. an accurate, but relatively simple expression relating the
outputs of interest to the input parameters. Statistics computed
from the surrogate model will be a good approximation to the
statistics of the real system. The polynomial chaos method
converges significantly faster than the Monte Carlo method,
however, the computational efficiency depends on the number
of random inputs and order of the polynomial expansion [16].
Polynomial chaos has previously been applied to quantify
uncertainties in computational electromagnetic problems[17],
including the variability in specific absorption rate caused
random handset position and orientation [18], [19].

A brief overview of polynomial chaos theory is outlined
in section II, discussing efficient methods to evaluate coef-
ficients in the expansion using sparse grids and quantifying
global sensitivity. Section III outlines the FDTD channel
models and discusses how polynomial chaos techniques can be
applied to estimate the uncertainty due to material properties
and building geometry. Section IV quantifies the uncertainty
introduced by randomness in the material properties and
locations of the transmitting and receiving antennas for a ray-
tracing channel model.

II. FORMULATION

A. The Polynomial Chaos Expansion

The polynomial chaos expansion (PCE) uses orthogonal
basis polynomials to approximate the functional form between
a stochastic quantity of interest and each of the random
inputs [16]. A stochastic quantity,R, can be expressed as the
truncated series expansion

R(ξ) =
P
∑

j=0

ajΨj(ξ), (1)

where aj is the weighting coefficient for the generalized
polynomial chaos basis,Ψj(·), in the N input variables,
ξ = {ξ1, ξ2, ... ξN}. The number of terms is given by
P + 1 = (N+D)!

N !D! , whereD is the highest polynomial order
in the expansion [16]. The construction of the multi-variate
basis functions,Ψj(ξ) is outlined in appendix A. Eqn. (1) can
be applied to characterize the uncertainty in numerical models
by expanding either the governing equations, or the solution
in terms of the random inputs; these approaches are termed
intrusive and non-intrusiverespectively [11]. This paper fo-
cuses on the non-intrusive approach, as the implementation
of intrusive polynomial chaos generally requires considerably

more computational resources to solve than the non-stochastic
problem [20]. For example an FDTD implementation of the
PCE increases the total memory consumption and run time by
factorP+1 [17]. For computationally large problems, such as
indoor propagation, an intrusive formulation is not currently
feasible.

B. Numerical Evaluation of PCE Coefficients

The polynomial chaos basis functions,Ψi(ξ), are orthogo-
nal with respect to a probability measure, e.g.

〈Ψi(ξ),Ψj(ξ)〉 =

∫

Ψi(ξ)Ψj(ξ)ρ(ξ) dξ

=
〈

Ψ2
j (ξ)

〉

δi,j , (2)

where δi,j is the Kronecker delta function, andρ(ξ) is the
probability weighting function. The input variables are as-
sumed to be independent as the weighting function is defined
ρ(ξ) =

∏N

i=1 ρ(ξi), where ρ(ξi) is the PDF of thei-th
input variable [16]. Using the orthogonality condition (2), the
coefficients,aj in (1), can be found by projection

aj =
〈R(ξ),Ψj(ξ)〉

〈

Ψ2
j (ξ)

〉

=
1

〈

Ψ2
j (ξ)

〉

∫

ΩN

R(ξ)Ψj(ξ) ρ(ξ) dξ, (3)

where the integration is over theN -dimensional input param-
eter space,ΩN . The multi-dimensional integration in (3) can
be evaluated using numerical quadrature, e.g.

∫

ΩN

R(ξ)Ψj(ξ) ρ(ξ) dξ

≈
∑

q

R
(

ξ{q}
)

Ψj

(

ξ{q}
)

w{q}, (4)

whereξ{q} andw{q} are the integration quadrature points and
weights respectively. The coefficients in (1) are thus evaluated
by collating the results from{q} simulations with inputs
ξ{q}. In the general case with multiple inputs (4) requires
forming a N -dimensional tensor-product grid of efficient
one-dimensional integration rules [20]. In this paper one-
dimensional Gaussian [21] and Kronrod-Patterson (KP) [22]
quadrature rules are used. However the number of quadrature
points to accurately estimate the integral rises exponentially
with N andD. To reduce the computational costs sparse-grid
integration techniques based on the Smolyak algorithm are
applied [20]. In many cases these can accurately approximate
multi-dimensional integrals with substantially fewer quadra-
ture points [22]. The construction of the Smolyak grids from
the one-dimensional quadrature rules is detailed in appendix B.

C. Estimating Statistics from the PCE

The mean and variance of the output,R, can be found from
the coefficients of (1) [11, p. 39],

µ[R(ξ)] = a0, (5)

σ2[R(ξ)] =
P
∑

j=1

a2j
〈

Ψ2
j (ξ)

〉

. (6)
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In general the PCE will contain a large number of terms, and
consequently it is difficult to analytically determine the PDF of
R(ξ). However, the PDF can be estimated by running a Monte
Carlo analysis on (1). The computational cost is relativelylow
as this expression only contains polynomial terms.

The global sensitivity ofR(ξ) to the various input parameter
uncertainties can be found by applying the the Sobol decom-
position to (1) [23]. The Sobol decomposition yields a set of
conditional variances—termed the Sobol indices—indicating
the relative contribution each combination of input parameters
makes toward to uncertainty inR. The Sobol indices for the
set of inputsu are given by [23]

Su =

∑

k∈Ku
a2k

〈

Ψ2
k (ξ)

〉

σ2 [R(ξ)]
, (7)

whereKu is an index to the expansion terms in (1) that contain
u. For N input variables (7) yields2N − 1 indices, and in
practice it is more useful to sumSu for each input variable
ξi; these are termed the total indices,

STi
=

∑

u∋i

Su (8)

and represents the sensitivity inR due toξi alone and all its
interactions with the other variables.

III. U NCERTAINTY IN FDTD CHANNEL MODELS

The non-intrusive polynomial-chaos technique is now ap-
plied to examine uncertainty in FDTD models of the indoor
radio channel. It is important to distinguish between the
outputs of the channel models (which are often characterized
statistically due to the complexity of the propagation pro-
cesses, e.g. Rayleigh/Rician and Lognormal models for the
instantaneous received power), and the variations introduced
by uncertainty in the material properties or other inputs. The
results presented in this paper focus on characterizing thelat-
ter. The uncertainty in the material properties and the building
geometry are considered separately to reduce the size of the
parameter space, and to ensure results from the polynomial
chaos method can be validated against Monte Carlo simula-
tions. Similarly, two-dimensional FDTD simulations are used
to limit the computational costs for the Monte-Carlo analysis.
Previous findings indicate many of the dominant propagation
mechanisms identified in a three-dimensional analysis are
present on two-dimensional ‘slices’ through the geometry [7].

A. Uncertainty in the Material Properties

A two-dimensional TMz implementation of the FDTD
method is used to examine propagation on a simplified hori-
zontal ‘slice’ through a multi-storey office building. Fig 1(a)
shows the floor plan: a 0.30 m thick concrete services shaft
(containing elevators and stairwells) is located in the centre
of the floor; the remaining space is divided into corridors
and offices by 0.10 m thick drywall partitions; and 1 cm
thick glass windows surround the outside face of the building.
The walls are modelled in the FDTD mesh as uniformly
homogeneous dielectric slabs with appropriate material prop-
erties. The nominal values and uncertainties in the material

TABLE I
MATERIAL PROPERTIES ANDASSOCIATEDUNCERTAINTY

Nominal Values Uncertainty
ǫr σ

E
(mS/m) Distribution ǫr σ

E
(mS/m)

Concrete 5.0 50.0 Uniform 4.0–6.0 40.0–60.0
Drywall 3.0 12.0 Uniform 2.4–3.6 9.6–14.4
Glass 3.0 4.0 Uniform 2.4–3.6 —

properties are listed in Table I (uncertainty in the glass
conductivity was not considered to reduce the size of the
parameter space). In the absence of detailed information for
the expected variations, the material properties are assumed
to follow uniform distributions, with limits±20% about their
nominal values [9]. It is also assumed that the randomness
in each material property is independent. The polynomial
chaos expansion is truncated at total orderD = {2, 3, 4}.
IncreasingD improves the accuracy, but requires additional
simulations to evaluate the inner products [20]. The numberof
quadrature points required for Smolyak sparse grids generated
using Gauss-Legendre integration rules are 61, 241 and 781
respectively.

A single Ez field component, located at a point indicated
with ‘×’ in Fig. 1(a), is used to excite the FDTD lattice
with a 1.0 GHz modulated Gaussian pulse. Square lattice
cells, with ∆ = 0.01 m are used, and the time-step is set
at 0.99 of the Courant limit. The FDTD simulation domain is
18 m×18 m and is terminated with a 12-cell thick UPML [24].
Each simulation was run for 12,000 time steps and the
1.0 GHz electric field magnitude and phase were extracted
by multiplying the time-series with a 1.0 GHz cisoid. The
resulting steady-stateEz fields are converted to path loss by
normalizing the source to1∠0 and averaged over3λ × 3λ
sectors to remove the effects of multipath fading [7], [25],
PL (dB) = −20 log10 (Esector avg.). The path loss (in dB
units) for each sector is then approximated as a function of
the material properties using (1), with (3) and (4) used to
find the coefficients. The uncertainty can then be quantified
by computing statistics such as the PDFs, mean, and 95%
confidence intervals (CI) [17], i.e. 95% of the variation in
received power for each sector can be expected to fall within
the range indicated.

Uncertainty inǫr introduces randomness in the strength of
the reflected (or transmitted) components; similarly, uncer-
tainty inσ

E
affects the attenuation of penetrating components.

Although the actual dependence of the path loss to the
variations in material properties is governed by Maxwell’s
Equations, an accurate polynomial approximation can be de-
rived using polynomial chaos expansion, (1). Fig. 2(a) and (b)
show PDFs of the sector-averaged path loss computed using
polynomial chaos expansions (truncated at total orderD = 2–
4) compared against those computed from 2000 Monte Carlo
trials of the FDTD channel model. As indicated in Fig. 1(b),
the two sectors are centred atx = 5 m, y = 5 m (where
the LOS path dominates), andx = 2 m, y = 16 m (in
the radio shadow of the services shaft). For both sectors,
statistics (mean and standard deviation) computed using the
polynomial chaos results compare well with the Monte-Carlo

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TAP.2013.2279094

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 1, NO. 1, JANUARY 1900

(a)

(b)

Fig. 1. Statistics of the sector-averaged path loss due to uncertainty in
the material parameters: (a) Spatial variation of the mean pathloss; and (b)
Contour plot of the 95% confidence interval. The location of the sectors used
to compute the PDFs are indicated.

simulations, and similar observations can be made for the other
sectors. Truncating the polynomial chaos expansion atD = 2
is sufficient to characterize the uncertainty in sector 1, and
increasing the order of the expansion does not improve the
results relative to the Monte-Carlo simulations. For sector 2,
the D = 2 expansion agrees well at the peak, however in
the tails of the PDF, particularly between 57–60 dB there is
divergence away from the MC results. The PCE is a global
interpolation, so in this caseD = 3 improves convergence in
the tails, at the expense of the peak, while theD = 4 truncation
achieves a good agreement in both the tails and the peak of
the PDF. However, both these effects are relatively small, and
the D = 2 expansion would be adequate for most practical
cases, resulting in a 30-fold decrease in computational costs
relative to the Monte Carlo simulations. For example, each
FDTD simulation takes approximately 20 minutes to complete:
2000 Monte-Carlo trials thus require 28 days of computer-
time; whereas 61 polynomial chaos simulations take 20 hours.
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Fig. 2. Probability distributions of the sector-averaged path loss due to
uncertainty in the material properties, as detailed in TableI, computed using
polynomial chaos and Monte-Carlo—(a) sector 1 centred atx = 5 m, y =

5 m; and (b) sector 2 centred atx = 2 m, y = 16 m.

Fig. 1(a) and (b) show the FDTD-simulated path loss and
the associated uncertainty in these results due to randomness
in the material properties (as listed in Table I). The polynomial
chaos expansion is truncated atD = 3. The path loss
generally increases with distance away from the transmitter.
The attenuation introduced by propagation through drywall
partitions increases path loss in the offices, relative to values
observed in the corridors—where strong line-of-sight (LOS)
paths exist. The concrete services shaft casts a large radio
shadow across the floor, significantly reducing the power in
regions opposite the transmitter (the path loss within the shaft
is also high).

The results in Fig. 1(b) show path loss uncertainty is low
in regions close to the transmitting antenna, but increases
when propagating through the drywall partitions (1–2 dB) or
into the services shaft (3–5 dB). Furthermore, as shown in
Fig. 3(a), the 95% CI on LOS paths (AĀ) remains small—
in most cases below 1.0 dB—and could be safely ignored
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Fig. 3. (a) Mean power and 95% confidence limits onAĀ andBB̄; and (b)
Relative contribution of each material property to the uncertainty observed on
BB̄.

for most practical purposes. By contrast, the uncertainty on
(BB̄)—where the dominant propagation mechanisms change
from near-LOS to reflection, diffraction, and scattering—is
relatively small for 0–6 m, but increases moving into the
deeply shadowed region. The uncertainty introduced by each
interaction of the propagating wave with the environment tends
to accumulate over longer paths.

Of particular interest is determining which material prop-
erties contribute most toward the uncertainty in the path loss
(i.e. the relative sensitivities) and can be quantified using (7)
and (8). If it is possible to reduce the uncertainty in the input
parameters (e.g. via additional measurements) the sensitivity
analysis indicates which inputs should be targeted to have the
greatest reduction in the output variability. Fig. 3(b) shows
the relative contribution of each material property to the
uncertainty observed onBB̄ (the sum of the Sobol indices at
each point has been normalized to 1.0). In near-LOS regions
(0–9 m) the path loss is most sensitive to the dielectric

(a)

(b)

Fig. 4. Density plots of the statistics for the sector-averaged path loss when
the nominal position of each internal wall is assumed to be random: (a) Mean;
and (b) 95% confidence interval. The location of the sectors used to compute
the PDFs are indicated.

properties of the drywall, in particular the relative permittivity.
By contrast, moving into the shadowed region (9–18 m)
increases the relative contribution of the glass.

B. Building Geometry Uncertainty

The ‘nominal’ building geometry considered in this section
is shown in Fig. 4(a). The size of the computational lattice is
reduced, but the other FDTD simulation parameters are kept
the same as the previous section. Randomness is introduced
by assuming that the spatial location of eight internal walls
(in the direction normal to the wall orientation) follows a
uniform distribution, with limits±10 cm. It is assumed that
the wall thickness (0.15 m) and material properties remain
constant (ǫr = 3 and σ

E
= 12 mS/m). In cases where the

dielectric walls are not aligned with the FDTD lattice, effective
properties for the boundary cells are computed based on the
weighted average. Similar to the previous section, a set of
quadrature points is generated using the Smolyak algorithm;
in this case Kronrod-Patterson quadrature rules were used to
reduce the computational costs. The FDTD model is solved
at each quadrature point and the results collated to solve for
the coefficients in the polynomial chaos expansion. For total
orderD = {2, 3} the number of FDTD simulations required
are 129 and 609 respectively.

Fig. 4(a) and (b) show the mean and 95% CIs for the
sector-averaged path loss, computed from polynomial chaos
expansions truncated atD = 3. Similar to the previous results,
the 95% CIs are generally low (< 1 dB) in regions where
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Fig. 5. Probability distributions of the path loss due to uncertainty in the
building geometry—computed using polynomial chaos (orderD = {2, 3})
and 2000 Monte-Carlo simulations—(a) sector 1 centred atx = 3 m, y =

1 m; and (b) sector 2 centred atx = 7 m, y = 11 m.

the LOS (or near-LOS) component dominates. The 95% CIs
tends to increases with propagation through the internal walls,
reaching a maximum of 14.4 dB. Uncertainty in the location
of the walls introduces randomness to any wave components
penetrating through or reflecting from the interface and the
effect of such multiple interactions accumulates. By contrast,
waves travelling over on LOS paths generally have few in-
teractions with the environment and are thus less affected by
uncertainty.

Fig. 5(a) and (b) show PDFs of the path loss computed
using polynomial chaos and 2000 Monte Carlo trials. For
both sectors examined, truncating the expansion atD = 2
predicts the mean value accurately (relative to the Monte
Carlo results), however, accuracy of the higher statistical
moments is significantly reduced. The statistics and PDFs
computed atD = 3 agree more closely with the Monte
Carlo simulations (similar findings can be observed for other
sectors). The polynomial chaos expansion can be interpreted

TABLE II
INPUT PARAMETERS AND UNCERTAINTY FOR RAY TRACING ANALYSIS

Nominal Value Distribution

Antenna Heights
ht 2.0 m Gaussian,σ = 0.03 m
hr 1.8 m Gaussian,σ = 0.03 m

Lateral Position
Lt 3.36 m Gaussian,σ = 0.15 m
Lr 2.36 m Gaussian,σ = 0.15 m

Surface Roughness σh 0.0 m Uniform, 0–0.05 m

Concrete Permittivity ǫr 5.0 Gaussian,σ = 0.50

as an interpolation in the random parameter space,ξ, and
depending on the complexity of the underlying system higher
(uni- and multi-variate) polynomial terms may be required to
achieve convergence. These results suggest the path loss is
more strongly influenced by the wall position than the material
properties.

IV. U NCERTAINTY IN RAY-TRACING CHANNEL MODELS

An image-based ray-tracer [26] is used to examine radio-
wave propagation in a ground-floor parking garage at 2.4 GHz.
The environment is electrically large and has been previously
used to test and calibrate equipment prior to deployment in
railway tunnels. The ray-tracing results are compared against
a site-survey conducted when the garage was empty. The goal
of the uncertainty analysis is to estimate the variability in the
simulated received power due to uncertainty in the environ-
ment and experimental setup. Table II lists the uncertain inputs
parameters considered. The uncertainties in the height and
lateral separation account for random error introduced when
positioning equipment during the site-survey, and are assumed
to follow Gaussian distributions.

The floor and ceiling are formed from poured concrete,
and surface roughness is included by altering the reflection
coefficients to account for diffuse reflection [27, pp. 16–17].
Partial side walls, concrete pillars and overhangs complicate
the analysis, but as these are relatively small the effects tend to
be localized and have been ignored in this study. Directional
antennas were used at both the transmitter and receiver, and
the measured radiation patterns embedded in the ray-tracer.
Increasing the number of reflections improves the results, but
adds considerably to computational costs; for this analysis the
maximum number of interactions was restricted to six, which
provided an adequate trade-off between accuracy and speed.

Fig. 6(a) shows the uncertainty in the ray-tracing predic-
tions of the received power as a function of the transmitter-
receiver separation distance. The mean and 90% confidence
intervals are computed using a polynomial chaos expansion
truncated atD = 2, with Smolyak sparse grids formed from
Kronrod-Patterson quadrature rules. In total, 73 simulations
were required. Also shown are the same statistics computed
using 2000 Monte-Carlo simulations; the close agreement
demonstrates the validity of the polynomial chaos approach.
The received power increases initially as the transmitter and
receiver are offset in the horizontal (lateral) direction by 1.0 m,
and consequently the LOS component is outside the main
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Fig. 6. Ray-tracing results for 2.4 GHz propagation in a ground-floor
garage. (a) Statistics of the received power versus distance—computed using
the polynomial chaos expansion (PC) and 2000 Monte-Carlo trials (MC)—
compared against experimental measurements; and (b) Relative contribution
of each input parameter to the uncertainty in the received power as a function
of distance.

beam of either the transmitting or receiving antenna. This
effect is also captured in the experimental measurements.

Randomness in the transmitter and receiver position alters
the length (and thus the relative phase) of the reflected
propagation paths. This leads to constructive or destructive
interference at the receiver, thereby introducing uncertainty
in the predictions of the power. Similarly, randomness in the
permittivity and surface roughness introduces uncertainty in
the magnitude and phase of the reflected components. It is
also noted that although the input uncertainties are small,
the spread in the predicted power is relatively large. For
example, at a transmitter-receiver separation of 31 m the mean
received power is−53 dBm, however the spread is large and
asymmetric, with 90% of the data falling between−45 dBm
and−65 dBm.

Fig. 6(b) shows the relative contribution each input pa-

rameter makes toward the total uncertainty as a function of
distance, computed using (8). For small separation distances
(1–10 m) the uncertainty in the lateral positions of the trans-
mitting and receiving antennas dominates. This is expected
as propagation in this region is largely governed by the LOS
path. In general, beyond 10 m separation, uncertainties in the
heights of both transmitting and receiving antennas introduce
most of the uncertainty in the received power. For example,
the largest uncertainty occurs at 31 m separation and is
almost entirely caused by the randomness in the height of
the transmitting antenna. Results also indicate uncertainty in
the surface roughness and permittivity have little effect—the
increase in the relative contribution ofǫr andσh beyond 70 m
occurs in region where the overall uncertainty in the path
loss is low. As the separation distance increases, the angle
of incidence for most reflected rays approaches glancing, i.e.
the reflection coefficients tend toward−1. Thus, the relative
strength of reflected components becomes independent of the
material properties. The measured data generally follows the
ray-tracing results, with most points falling within the 90%
CI. However, the deviation from the ray-tracing results at
some locations suggests not all the variation can be associated
with the uncertainty in the input parameters. Other features
of the channel, such as local scattering from objects in the
environment may be required to improve the predictions.

V. CONCLUSIONS

Most previous applications of deterministic channel mod-
els to characterize indoor propagation assume nominal (and
constant) values for the input parameters such as dielectric
properties, geometry and antenna positions. In many cases
these parameters are not well defined and must be consid-
ered random, i.e. a degree of uncertainty exists. This input
uncertainty will ‘propagate’ through the deterministic models
to introduce uncertainty in the predictions. The results pre-
sented in this paper show that for typical parameter variations
the uncertainty in the modelled path loss can be large (in
some cases greater than 10 dB) and thus cannot be ignored
when applying deterministic channel models to plan system
deployments. Although the levels of uncertainty are specific
to the problem, the size of the 95% confidence intervals is
generally observed to increase with distance. Non-intrusive
polynomial chaos provides a method to accurately characterize
these uncertainties at significantly lower computational cost
than competing methods.

APPENDIX A
POLYNOMIAL CHAOS BASIS IN MULTIPLE VARIABLES

The polynomial chaos basis is a multi-variate function of the
N input variables,ξ = {ξ1, ξ2, ... ξN}, and can be expressed

Ψj(ξ) =
N
∏

i=1

φ
m

j

i

(ξi), (9)

where φ
m

j

i

(ξi) is a one-dimensional orthogonal polynomial

in ξi, m
j
i is the multi-index corresponding to the order, and

j = 0 . . . P . While any suitable orthogonal functions may
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be used, it can be shown that the optimal polynomial basis,
φ(ξi), depends on the distribution of random variableξi [16].
This association is termed the Weiner-Askey scheme—in
which, Gaussian distributed inputs are associated with Hermite
polynomials and uniformly distributed inputs with Legendre
polynomials [16]. For example, the polynomial chaos basis
functions truncated at total orderD = 3, for N = 2 (where
ξ1 is Gaussian distributed, andξ2 is uniformly distributed) are

Ψ0(ξ) = φ0(ξ1)φ0(ξ2) = 1

Ψ1(ξ) = φ0(ξ1)φ1(ξ2) = ξ2

Ψ2(ξ) = φ1(ξ1)φ0(ξ2) = ξ1

Ψ3(ξ) = φ1(ξ1)φ1(ξ2) = ξ1ξ2

Ψ4(ξ) = φ0(ξ1)φ2(ξ2) =
1

2
(3ξ22 − 1)

Ψ5(ξ) = φ2(ξ1)φ0(ξ2) = ξ21 − 1

Ψ6(ξ) = φ1(ξ1)φ2(ξ2) =
1

2
ξ1(3ξ

2
2 − 1)

Ψ7(ξ) = φ2(ξ1)φ1(ξ2) = (ξ21 − 1)ξ2

Ψ8(ξ) = φ0(ξ1)φ3(ξ2) =
1

2
(5ξ32 − 3ξ2)

Ψ9(ξ) = φ3(ξ1)φ0(ξ2) = ξ32 − 3ξ2.

APPENDIX B
SMOLYAK SPARSE GRIDS

The Smolyak algorithm selectively combines the tensor-
products of lower order quadrature rules to more efficiently
cover the parameter space for low-order terms. ForN di-
mensions, with maximum orderd, the Smolyak approximation
to (4) is given by [20]

U =
∑

d−N+1≤|i|≤d

(−1)d−|i|
(

N − 1

d− |i|

)

(Qi1 ⊗ . . .⊗QiN )

(10)
where {Qi1 , . . . QiN } are one-dimensional quadrature rules
for the N inputs, andi represents the orders that are com-
bined. The Smolyak algorithm in (10) can be applied to any
set of suitable one-dimensional quadrature rules, however,
sparse grids formed from nested integration rules are also
interpolatory. Nested rules, such as Kronrod-Patterson, retain
quadrature points as the order of integration increases. These
consequently introduce less error than non-nested rules ifthe
order of the integrand exceeds that of the quadrature rule [28].
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