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Abstract—A non-intrusive formulation of the polynomial chaos the materials and building layout can be expressed as random
method is applied to quantify the uncertainties in deterministic variables—characterized by appropriate probability dgnsi
models of the indoor radio channel. Deterministic models based f,nctions (PDFs)—with the actual geometry and dielectric

on the Finite-Difference Time-Domain (FDTD) method and ray ti . d ticul lizati 10 178
tracing are examined. Various sources of parameter uncertainty properties viewed as a particular realization [10, pp. 12

are considered, including randomness in the material properties, randomness in the input parameters ‘propagates’ through th
building geometry, and the spatial location of transmitting and deterministic channel models and introduces uncertamtie
rece_iving antennas. The_ polyr]omial chaos res_ults are confirmed results [11, pp. 6-7]. The size of this output uncertainty is
against Monte Carlo simulations and experimental measure- ya|ateq to the uncertainties in the input and how thesednoter
ments. The analysis shows the expected variation in the sector- . . . . .
averaged path loss can be considerable for relatively small input with the model. A single simulation run (at the .nolmlnal \{&Iue
parameter uncertainties, leading to the conclusion that a single Of otherwise) does not account for the uncertainties, wbash
simulation run using ‘nominal values’ may be insufficient to typically only be examined by collating multiple results.
adequately characterize the indoor radio channel. Previous investigations have shown ray-tracing or FDTD
models of the radio channel can be highly dependent on the
building geometry and dielectric properties [3], [4], [Hor
example, Wangpt. al, and later Athanasiadoet. al, identified
NDERSTANDING the propagation characteristics of thenany of the key factors influencing the sensitivity of outdoo
radio channel is essential to predict the performance @fy-tracing models [12], [13]. However, these findings were
modern wireless systems operating in outdoor environmemigsed on sweeping each parameter over a range of values to fit
and within buildings [1]. Consequently there has been ifhe simulated results against measurements. This papesesc
creased interest in developing site-specific models foodnd on the inverse problem, namely “what is the expected vaniati
environments using deterministic methods with a rigoroys the predictions when the inputs are uncertain?”. Whils thi
electromagnetic basis. For example, ray-tracing (e.g.[B}] problem has not been examined in detail for either FDTD or
and time-domain methods (e.g. [4]-{7]) have been applied {gy-tracing models of the indoor channel, such an analgsis i
model radio wave propagation within buildings. Most deteimportant to assess the sensitivity of the predictions aam c
ministic models require a detailed characterization ofither- give a measure of confidence in the simulated results. This
nal environment, particularly the geometry and correspund is particularly relevant when using such models to plan or
dielectric properties. optimize wireless system deployments, where no (or linited
However, considerable uncertainty can exist in the descrigkperimental data is available.
tion of the environment. The dielectric properties of tyic  The Monte Carlo method is widely used to quantify the
building materials are difficult to measuiresitu, and nominal impacts of uncertainty and randomness in numerical models
values from tabulated experimental data (e.g. [8], [9]) agith multiple inputs, as the size of the parameter space
often used [3], [7]. Changes in the atmospheric moistufecreases exponentially with the number of independent ran
content, variability in the manufacturing processes, d¢reot dom variables considered; e.g. faF independent inputs the
random factors will introduce uncertainty in the valuestod t parameter space spamé dimensions, and cannot be fully
relative permittivity and electrical conductivity. Untainty explored by considering each input independently. In the
in the geometry can arise as detailed floor plans are usualfignte Carlo method a large number of random inputs are
not available for older buildings, and must be reCOHSt[ﬂJCt@enerated based on prescribed (or assumed) probabiltty dis
from physical measurements, or converted from blue-printsutions, and the model is solved for each realization. Stedil
Furthermore, even if detailed architectural drawings ala information, such as the mean and variance are found by
able, uncertainty often remains as construction tolemacel appropriately collating the random solutions [11, pp. 8-9]
later modifications may not be recorded. The uncertainty The Monte Carlo method has been demonstrated to provide

. . . accurate results for electromagnetic problems [14]. Harev
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I. INTRODUCTION
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remains widely used as it is simple to apply and convergencenore computational resources to solve than the non-stichas

independent of dimensionality [11, p. 9]. Other methodshsuproblem [20]. For example an FDTD implementation of the

as perturbation can also be used for sensitivity and uringrta PCE increases the total memory consumption and run time by

analysis. However, perturbation is usually only valid foraedl factor P+1 [17]. For computationally large problems, such as

changes in the inputs. indoor propagation, an intrusive formulation is not cuthen
More recently, methods based on generalized polynomfahsible.

chaos—an extension of the homogeneous chaos introduced by

Wiener [15]—have been developed to quantify uncertainty B. Numerical Evaluation of PCE Coefficients

numerical models [10], [16]. The polynomial chaos method The polynomial chaos basis functions;(¢), are orthogo-

approximates quantities in a stochastic process as the fifjy with respect to a probability measure, e.g.
summation of orthogonal basis polynomials in the random

input parameter space. The resulting polynomial expansion (U;(8),¥;(€)) = /\pi(g)\pj(g)p(g) d¢
thus provides a surrogate model for the underlying system, )
i.e. an accurate, but relatively simple expression rejathre = <‘I’j (€)> 0i g @

outputs of interest to the input parameters. Statisticsprdet  \yhere 5, is the Kronecker delta function, ane(¢) is the
from the surrogate model will be a good approximation to thgopapility weighting function. The input variables are- as
statistics of the real system. The polynomial chaos methgfmed to be independent as the weighting function is defined
converges significantly faster than the Monte Carlo metho ¢) = HJLP(&): where p(¢;) is the PDF of thei-th
however, the computational efficiency depends on the numln%ut variable [16]. Using the orthogonality condition (2)e

Polynomial chaos has previously been applied to quantify (R(E), U;(€)
— MUS) FGNS)/

uncertainties in computational electromagnetic probl§hi,

including the variability in specific absorption rate cadise e <‘I’§(€)>
random handset position and orientation [18], [19]. B 1 _
A brief overview of polynomial chaos theory is outlined - <\1;?(5)> N R(£) ¥;(8) p(€) dE, ®)

in section I, discussing efficient methods to evaluate coef . L . . .
9 where the integration is over th€-dimensional input param-

ficients in the expansion using sparse grids and quantifyin{ger spaceQ™. The multi-dimensional integration in (3) can

global sensitivity. Section Il outlines the FDTD channeE . .
; . . evaluated using numerical quadrature, e.g.
models and discusses how polynomial chaos techniques can Bé

applied to estimate the uncertainty due to material progsert

and building geometry. Section IV quantifies the uncerjaint |, R(€)¥;(£) p(€) g

introduced by randomness in the material properties and N {q} @\, {a}

locations of the transmitting and receiving antennas faaya r - Z R ('S ) ¥ ('S ) wi, (@)
q

tracing channel model.
whereg{q} andw!?! are the integration quadrature points and
[I. FORMULATION weights respectively. The coefficients in (1) are thus extaid

A. The Polynomial Chaos Expansion by collating the results from{g} simulations with inputs

{a} i i i i
The polynomial chaos expansion (PCE) uses orthogorfal ° In the general case with multiple inputs (4) requires

. . . . orming a N-dimensional tensor-product grid of efficient
basis polynomials to approximate the functional form betwe one-dimensional integration rules [20]. In this paper one-
a stochastic quantity of interest and each of the randoépmensional Gaussiar? [21] and Kronroa-Patterso% F()KP) [22]
inputs [16]. A stochastic quantity?, can be expressed as the

. , quadrature rules are used. However the number of quadrature
truncated series expansion . ; ; . .
points to accurately estimate the integral rises expoaknti
P with N and D. To reduce the computational costs sparse-grid
R(€) = Zai\pj(é)’ @) integration techniques based on the Smolyak algorithm are
3=0 applied [20]. In many cases these can accurately approgimat
where a; is the weighting coefficient for the generalizednulti-dimensional integrals with substantially fewer dee

polynomial chaos basis¥;(-), in the N input variables, ture points [22]. The construction of the Smolyak grids from

& = {&,&,... (v} The number of terms is given bythe one-dimensional quadrature rules is detailed in agpdhd
P+1= (NN%’I)I, where D is the highest polynomial order

in the expansion [16]. The construction of the multi-vagiatC. Estimating Statistics from the PCE

basis functionsy;(£) is outlined in appendix A. Eqn. (1) can - The mean and variance of the outpit,can be found from
be applied to characterize the uncertainty in numericalet®d he coefficients of (1) [11, p. 39],

by expanding either the governing equations, or the salutio

in terms of the random inputs; these approaches are termed uR(€)] = ao, (®)
intrusive and non-intrusiverespectively [11]. This paper fo- P
cuses on the non-intrusive approach, as the implementation FPRE)] = aZ (¥ (€). (6)
of intrusive polynomial chaos generally requires considgr J=1
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. : TABLE |
In general the PCE will contain a large number of terms, and MATERIAL PROPERTIES ANDASSOCIATEDUNCERTAINTY

consequently it is difficult to analytically determine thBPof

R(&). However, the PDF can be estimated by running a Monte Nominal Values Uncertainty
Carlo analysis on (1). The computational cost is relatively e op (mS/m) Distribution ¢, o (MS/m)
as this expression only contains polynomial terms. Concrete 5.0 50.0 Uniform  4.0-6.0  40.0-60.0
it i ; ; Drywall 3.0 12.0 Uniform 2.4-3.6 9.6-14.4
The global sensitivity of?(&) to the various input parameter Clas 30 e Uniform 2.4.5.6 i

uncertainties can be found by applying the the Sobol decom-
position to (1) [23]. The Sobol decomposition yields a set of
conditional variances—termed the Sobol indices—indicating
the relative contribution each combination of input parterse Properties are listed in Table | (uncertainty in the glass
makes toward to uncertainty iR. The Sobol indices for the conductivity was not considered to reduce the size of the

set of inputsu are given by [23] parameter space). In the absence of detailed information fo
9 oo the expected variations, the material properties are asgum
g — 2 ke, U (W3 (&) 7 t follow uniform distributions, with limits+20% about their
“ a2 [R(§)] ’ nominal values [9]. It is also assumed that the randomness

where, is an index to the expansion terms in (1) that contail €ach material property is independent. The polynomial
u. For N input variables (7) yield2¥ — 1 indices, and in chaos expansion is truncated at total order= {2,3,4}.
practice it is more useful to surfi, for each input variable IncreasingD improves the accuracy, but requires additional

& these are termed the total indices, simulations to evaluate the inner products [20]. The nunalber

quadrature points required for Smolyak sparse grids gestbra
Sr, =Y S, (8) using Gauss-Legendre integration rules are 61, 241 and 781

udi respectively.

and represents the sensitivity i due to&; alone and all its A single £, field component, located at a point indicated

interactions with the other variables. with “x’ in Fig. 1(a), is used to excite the FDTD lattice
with a 1.0 GHz modulated Gaussian pulse. Square lattice

I1l. UNCERTAINTY IN FDTD CHANNEL MODELS cells, with A = 0.01 m are used, and the time-step is set

The non-intrusive polynomial-chaos technique is now a it 0.99 of the Courant limit. The FDTD simulation domain is

plied to examine uncertainty in FDTD models of the indoo'jé8 m><1_8 m and is terminated with a12-ce_ll thick UPML [24].
. o e ach simulation was run for 12,000 time steps and the
radio channel. It is important to distinguish between th

outputs of the channel models (which are often charactdarizg'o GHz electric field magnitude and phase were extracted

statistically due to the complexity of the propagation prot—)y multiplying the time-series with a 1.0 GHz cisoid. The

cesses, e.g. Rayleigh/Rician and Lognormal models for theesultiqg.steady-stath fields are converted to path loss by
instantaneous received power), and the variations intedu ggéigfgzt'ggret&eo\f:liacee ;?fé(gsags rﬁ\lj‘latiragtehd fg(\j/?:)‘ ><73/\25
by uncertainty in the material properties or other inputse T PL (dB) — —201 5 Thep ath Iosg [.n]' CEB ]
results presented in this paper focus on characterizingpthe = (dB) = - Oglo.( Sector avg)- € P (i ;

ter. The uncertainty in the material properties and theding units) for ?aCh sectqr IS th_en approglmated as a function of
geomety are considere separately 0 reduce e i of I T PPeris e () i (9 a4 v
parameter space, and to ensure results from the polynomPﬁ computing statistics such as the PDFs, mean, and 95%
confidence intervals (Cl) [17], i.e. 95% of the variation in

received power for each sector can be expected to fall within

chaos method can be validated against Monte Carlo simu
tions. Similarly, two-dimensional FDTD simulations areeds
to limit the computational costs for the Monte-Carlo anedys o
Previous findings indicate many of the dominant propagati(yﬂe range .|nd|(?ated.. ,

mechanisms identified in a three-dimensional analysis arencertainty ine; introduces randomness in the strength of

present on two-dimensional ‘slices’ through the geometiy [ th_e re_flected (or transmitted) _components; _S|m|IarIy, wce
tainty in o, affects the attenuation of penetrating components.

o ) _ Although the actual dependence of the path loss to the

A. Uncertainty in the Material Properties variations in material properties is governed by Maxwell's

A two-dimensional TM implementation of the FDTD Equations, an accurate polynomial approximation can be de-
method is used to examine propagation on a simplified horived using polynomial chaos expansion, (1). Fig. 2(a) d)d (
zontal ‘slice’ through a multi-storey office building. Figa) show PDFs of the sector-averaged path loss computed using
shows the floor plan: a 0.30 m thick concrete services shafilynomial chaos expansions (truncated at total ofder 2—
(containing elevators and stairwells) is located in thetreen 4) compared against those computed from 2000 Monte Carlo
of the floor; the remaining space is divided into corridorgials of the FDTD channel model. As indicated in Fig. 1(b),
and offices by 0.10 m thick drywall partitions; and 1 cnthe two sectors are centred at= 5 m, y = 5 m (where
thick glass windows surround the outside face of the bujdinthe LOS path dominates), and = 2 m, y = 16 m (in
The walls are modelled in the FDTD mesh as uniformlthe radio shadow of the services shaft). For both sectors,
homogeneous dielectric slabs with appropriate materigpr statistics (mean and standard deviation) computed usieg th
erties. The nominal values and uncertainties in the materolynomial chaos results compare well with the Monte-Carlo
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Fig. 1. Statistics of the sector-averaged path loss due tertainty in  Fig. 2. Probability distributions of the sector-averageathploss due to
the material parameters: (a) Spatial variation of the mean lpa#) and (b) uncertainty in the material properties, as detailed in Tabtmmputed using
Contour plot of the 95% confidence interval. The locationhaf $ectors used polynomial chaos and Monte-Carlo—(a) sector 1 centred at 5 m, y =
to compute the PDFs are indicated. 5 m; and (b) sector 2 centred at=2 m, y = 16 m.

simulations, and similar observations can be made for therot Fig. 1(a) and (b) show the FDTD-simulated path loss and
sectors. Truncating the polynomial chaos expansiob at 2 the associated uncertainty in these results due to randssmne
is sufficient to characterize the uncertainty in sector i amn the material properties (as listed in Table I). The polyied
increasing the order of the expansion does not improve tbleaos expansion is truncated & = 3. The path loss
results relative to the Monte-Carlo simulations. For se@o generally increases with distance away from the transmitte
the D = 2 expansion agrees well at the peak, however ifhe attenuation introduced by propagation through drywall
the tails of the PDF, particularly between 57-60 dB there jmrtitions increases path loss in the offices, relative taes
divergence away from the MC results. The PCE is a globabserved in the corridors—where strong line-of-sight (LOS)
interpolation, so in this cas® = 3 improves convergence in paths exist. The concrete services shaft casts a large radio
the tails, at the expense of the peak, whilefhe- 4 truncation shadow across the floor, significantly reducing the power in
achieves a good agreement in both the tails and the peakregions opposite the transmitter (the path loss within tiadts

the PDF. However, both these effects are relatively smatl, ais also high).

the D = 2 expansion would be adequate for most practical The results in Fig. 1(b) show path loss uncertainty is low
cases, resulting in a 30-fold decrease in computationakcom regions close to the transmitting antenna, but increases
relative to the Monte Carlo simulations. For example, eaathen propagating through the drywall partitions (1-2 dB) or
FDTD simulation takes approximately 20 minutes to completato the services shaft (3-5 dB). Furthermore, as shown in
2000 Monte-Carlo trials thus require 28 days of computeFig. 3(a), the 95% Cl on LOS pathA@A) remains small—
time; whereas 61 polynomial chaos simulations take 20 houits most cases below 1.0 dB—and could be safely ignored
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Fig. 4. Density plots of the statistics for the sector-agethpath loss when
the nominal position of each internal wall is assumed to beaanda) Mean;

and (b) 95% confidence interval. The location of the sectsesiuo compute
the PDFs are indicated.

I o
D (o))

Contribution to Uncertainty
o
N

0O 2 4 6 8 10 12 14 16 18 _ _ ) ) o
Y (m) properties of the drywall, in particular the relative pettiwity.
.Concrete .Drywall DGI%S . Drywall | BY contrast, moving into the shadowed region (9-18 m)
€ € er 0B increases the relative contribution of the glass.
(b)

Concrete
OF

B. Building Geometry Uncertainty

Fig. 3. (a) Mean power and 95% confidence limitsAdA andBB; and (b) The ‘nominal’ building geometry considered in this section
]Rg%a.ttlve contribution of each material property to the utaiaty observed on is shown in Fig. 4(a). The size of the computational lattie i
reduced, but the other FDTD simulation parameters are kept
the same as the previous section. Randomness is introduced
) ) by assuming that the spatial location of eight internal svall
for most practical purposes. By contrast, the uncertaimy @n the direction normal to the wall orientation) follows a
(BB)—where the dominant propagation mechanisms changgiform distribution, with limits+10 cm. It is assumed that
from near-LOS to reflection, diffraction, and scattering—ighe wall thickness (0.15 m) and material properties remain
relatively small for 0-6 m, but increases moving into thggnstant ¢ = 3 ando, = 12 mS/m). In cases where the
deeply shadowed region. The uncertainty introduced by eagf|ectric walls are not aligned with the FDTD lattice, efige
interaction of the propagating wave with the environmentise properties for the boundary cells are computed based on the
to accumulate over longer paths. weighted average. Similar to the previous section, a set of
Of particular interest is determining which material propguadrature points is generated using the Smolyak algoyithm
erties contribute most toward the uncertainty in the pa#is loin this case Kronrod-Patterson quadrature rules were used t
(i.e. the relative sensitivities) and can be quantified gigif) reduce the computational costs. The FDTD model is solved
and (8). If it is possible to reduce the uncertainty in theuinp at each quadrature point and the results collated to solve fo
parameters (e.g. via additional measurements) the satysitithe coefficients in the polynomial chaos expansion. For tota
analysis indicates which inputs should be targeted to Ha&e brder D = {2,3} the number of FDTD simulations required
greatest reduction in the output variability. Fig. 3(b) wso are 129 and 609 respectively.
the relative contribution of each material property to the Fig. 4(a) and (b) show the mean and 95% Cls for the
uncertainty observed ocBB (the sum of the Sobol indices atsector-averaged path loss, computed from polynomial chaos
each point has been normalized to 1.0). In near-LOS regioggpansions truncated & = 3. Similar to the previous results,
(09 m) the path loss is most sensitive to the dielectribe 95% Cls are generally low<(1 dB) in regions where
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TABLE II
0.35 : : : : : INPUT PARAMETERS AND UNCERTAINTY FORRAY TRACING ANALYSIS
—e— Polynomial Chaos: D =|2
0.3l ) \| —— Polynomial Chaos: D =38 Nominal Value Distribution
’ /|- — — Monte Carlo: 2000 Trials 3 20 G - 003
. t .Om aussiang = 0. m
> 0.25f E Antenna Heights hy 1.8 m Gaussiang = 0.03 m
2 ,
c - Lt 3.36 m Gaussiany = 0.15 m
a 0.2r 1 Lateral Position L, 2.36 m Gaussiany = 0.15 m
2 :
= Surface Roughness oy, 0.0m Uniform, 0—0.05 m
8 0.15 ]
2 Concrete Permittivity e, 5.0 Gaussiang = 0.50
a
0.1} 1
0.05 1 as an interpolation in the random parameter sp#gceand
depending on the complexity of the underlying system higher
Q56 53 60 62 64 66 68 70 12 (uni- and multi-variate) polynomial terms may be required t
Path Loss (dB) achieve convergence. These results suggest the path loss is
@) more strongly influenced by the wall position than the materi
properties.
1.2—= : ‘ ;
—oe— Polynomial Chaos: D =|2
—— Polynomial Chaos: D =|3'} IV. UNCERTAINTY IN RAY-TRACING CHANNEL MODELS
1} - - - Monte Carlo: 2000 Trial | . . . .
An image-based ray-tracer [26] is used to examine radio-
= 0.8k | wave propagation in a ground-floor parking garage at 2.4 GHz.
é:» The environment is electrically large and has been prelyjous
B | used to test and calibrate equipment prior to deployment in
5 railway tunnels. The ray-tracing results are comparedregai
3 0.4l | a site-survey conducted when the garage was empty. The goal
o of the uncertainty analysis is to estimate the variabilitythie
simulated received power due to uncertainty in the environ-
0.2 | ment and experimental setup. Table Il lists the uncertgnts
parameters considered. The uncertainties in the height and
O S—a—=a 4 ! " . .
58 39 10 n 22 13 24 Iatergl ;eparatlpn accounF for ranc}om error introducednwhe
Path Loss (dB) positioning equipment during the site-survey, and arerassu

to follow Gaussian distributions.
(b) -
The floor and ceiling are formed from poured concrete,
Eigl-d?n- F;rgntiz?rility géiirizl:ggnjsm th% |pr?g:nlizlsscr?:gst?o?ﬁﬁ%?:&?f and surface roughness is included by altering the reflection
aLrjlld ZC?OCQJJ MonteYCarIo s?mulationsg—Fa)ysector 1 centred at 3 m,7y — coefficients to account for diffuse reflection [27, pp. 16117
1 m; and (b) sector 2 centred at="7 m, y = 11 m. Partial side walls, concrete pillars and overhangs corafgic
the analysis, but as these are relatively small the effeots to
be localized and have been ignored in this study. Directiona
the LOS (or near-LOS) component dominates. The 95% Cistennas were used at both the transmitter and receiver, and
tends to increases with propagation through the interndswathe measured radiation patterns embedded in the ray-tracer
reaching a maximum of 14.4 dB. Uncertainty in the locatiomcreasing the number of reflections improves the results, b
of the walls introduces randomness to any wave componeatids considerably to computational costs; for this anglys
penetrating through or reflecting from the interface and thmeaximum number of interactions was restricted to six, which
effect of such multiple interactions accumulates. By castir provided an adequate trade-off between accuracy and speed.
waves travelling over on LOS paths generally have few in- Fig. 6(a) shows the uncertainty in the ray-tracing predic-
teractions with the environment and are thus less affecyed fions of the received power as a function of the transmitter-
uncertainty. receiver separation distance. The mean and 90% confidence
Fig. 5(a) and (b) show PDFs of the path loss computédtervals are computed using a polynomial chaos expansion
using polynomial chaos and 2000 Monte Carlo trials. Fdruncated atD = 2, with Smolyak sparse grids formed from
both sectors examined, truncating the expansiorDat 2 Kronrod-Patterson quadrature rules. In total, 73 simouhesi
predicts the mean value accurately (relative to the Monteere required. Also shown are the same statistics computed
Carlo results), however, accuracy of the higher statisticasing 2000 Monte-Carlo simulations; the close agreement
moments is significantly reduced. The statistics and PDHsmonstrates the validity of the polynomial chaos approach
computed atD = 3 agree more closely with the MonteThe received power increases initially as the transmitret a
Carlo simulations (similar findings can be observed for pbtheeceiver are offset in the horizontal (lateral) directign1b0 m,
sectors). The polynomial chaos expansion can be intepretnd consequently the LOS component is outside the main
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rameter makes toward the total uncertainty as a function of

—— PC, 5% Quantile distance, computed using (8). For small separation disganc
——PC, 95% Quantilg (1-10 m) the uncertainty in the lateral positions of the gran

PC, Mean mitting and receiving antennas dominates. This is expected
- _mgaz‘;;)egj;ﬁ”e as propagation in this region is largely governed by the LOS
~ ~ - MC. 95% Quantile path. In general, beyond 10 m separation, uncertaintielsein t

heights of both transmitting and receiving antennas intced
most of the uncertainty in the received power. For example,
the largest uncertainty occurs at 31 m separation and is
almost entirely caused by the randomness in the height of
the transmitting antenna. Results also indicate unceytam

the surface roughness and permittivity have little effedte—t
increase in the relative contribution ef ando;, beyond 70 m

‘ occurs in region where the overall uncertainty in the path

X | - - - MC, Mean

Received Power (dBm)

-65 : ‘ L ‘ ‘ ‘
0 10 20 3 40 50 60 70 80 loss is low. As the separation distance increases, the angle
Transmitter—Receiver Separation (m) o . .
of incidence for most reflected rays approaches glancieg, i.
(@ the reflection coefficients tend towardl. Thus, the relative
strength of reflected components becomes independent of the
1

material properties. The measured data generally folldwes t
ray-tracing results, with most points falling within the %0
Cl. However, the deviation from the ray-tracing results at
some locations suggests not all the variation can be asedcia
with the uncertainty in the input parameters. Other feature
of the channel, such as local scattering from objects in the
environment may be required to improve the predictions.

o
o)

o
=L

o
~

V. CONCLUSIONS

Contribution to Uncertainty

Most previous applications of deterministic channel mod-
els to characterize indoor propagation assume nominal (and
constant) values for the input parameters such as dialectri
properties, geometry and antenna positions. In many cases
these parameters are not well defined and must be consid-
ered random, i.e. a degree of uncertainty exists. This input

(®) uncertainty will ‘propagate’ through the deterministic deds
Fig. 6. Ray-tracing results for 2.4 GHz propagation in a gbfioor tO introduce uncertainty in the predictions. The results- pr
garage. (a) Statistics of the received power versus distacomputed using sented in this paper show that for typical parameter vaniati
the polynomial chaos expansion (PC) and 2000 Monte-CarstMC)—  the yncertainty in the modelled path loss can be large (in
compared against experimental measurements; and (b) Relatiebation -
of each input parameter to the uncertainty in the receivecepas a function SOME cases greater than 10 dB) and thus cannot be ignored
of distance. when applying deterministic channel models to plan system
deployments. Although the levels of uncertainty are specifi
to the problem, the size of the 95% confidence intervals is
beam of either the transmitting or receiving antenna. Th@generally observed to increase with distance. Non-inteusi
effect is also captured in the experimental measurements. polynomial chaos provides a method to accurately chaiaeter

Randomness in the transmitter and receiver position altdh§Se uncertainties at significantly lower computatiorastc
the length (and thus the relative phase) of the reflectéfn competing methods.
propagation paths. This leads to constructive or desweicti
interference at the receiver, thereby introducing unassta APPENDIXA
in the predictions of the power. Similarly, randomness i@ th POLYNOMIAL CHAOS BASIS IN MULTIPLE VARIABLES

permittivity and surface roughness introduces uncestaint  The polynomial chaos basis is a multi-variate function ef th

the magnitude and phase of the reflected components. It]\isinput variablesg = {¢;,&, ... £y}, and can be expressed
also noted that although the input uncertainties are small,

the spread in the predicted power is relatively large. For N

example, at a transmitter-receiver separation of 31 m tremmme v;(8) = H ¢mi- (&), ©)
received power is-53 dBm, however the spread is large and =1

asymmetric, with 90% of the data falling betweed5 dBm where ¢m-g (&) is a one-dimensional orthogonal polynomial

and —65 dBm. in &, m? is the multi-index corresponding to the order, and
Fig. 6(b) shows the relative contribution each input pg- = 0... P. While any suitable orthogonal functions may

0.2

0 10 20 30 40 50 60 70

Transmitter—Receiver Separation (m)

80
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be used, it can be shown that the optimal polynomial basigs]
#(&;), depends on the distribution of random variabld16].

This association is termed the Weiner-Askey scheme—i[g]
which, Gaussian distributed inputs are associated witimiier
polynomials and uniformly distributed inputs with Legeadr
polynomials [16]. For example, the polynomial chaos basig]
functions truncated at total orddp = 3, for N = 2 (where

&, is Gaussian distributed, argd is uniformly distributed) are [8l

Po(§) = do(&1)do(&2) =1 [9]
U1(€) = do(&1)¢1(82) = &2
Uy(§) = ¢1(&1)P0(§2) = & [10]
U3(8) = ¢1(&1)¢1(82) = L&z [11]
Wa(€) = bo(€0)0n(E2) = 3 (36 — 1)
s (€) = d(€1)d0(&2) = & — 1 1
Uo(€) = 1(6)2(6&2) = 5636 — 1) e
U7(€) = pa(&1)¢1(&2) = (6 — 1)& »
Vs (&) = do(61)¢a(62) = %(553 —3&2)
Uo(&) = p3(&1)do(&2) = & — 3. (15]
[16]
APPENDIX B
SMOLYAK SPARSE GRIDS [17]

The Smolyak algorithm selectively combines the tensor-
products of lower order quadrature rules to more efficient[YS]
cover the parameter space for low-order terms. Bordi-
mensions, with maximum ordel the Smolyak approximation
to (4) is given by [20]

d—N+1<[i|<d
(10)

where {Q;,,...Q;,} are one-dimensional quadrature rules
for the N inputs, andi represents the orders that are comi21]
bined. The Smolyak algorithm in (10) can be applied to any
set of suitable one-dimensional quadrature rules, howevgp;
sparse grids formed from nested integration rules are also
interpolatory. Nested rules, such as Kronrod-Pattersataijrr
guadrature points as the order of integration increasessé@h
consequently introduce less error than non-nested rulée if [24]
order of the integrand exceeds that of the quadrature r8le [2

[25]

(19]
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