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Efficient Field Reconstruction Using Compressive Sensing
Andrew C. M. Austin and Michael J. Neve

Abstract—Compressive sensing is used to reconstruct the time-

harmonic electric field created by multipath fading from a limited number

of measurement points over a planar region. The multipath fading signal

is shown to be the superposition of multiple plane wave components and

thus has a sparse representation in the spatial-frequency domain. The

discrete Fourier-basis used as the dictionary for orthogonal matching

pursuit is oversampled to ensure sufficient resolution in the spatial-

frequency domain. Experimental results at 10 GHz using an arbitrary

plane wave expansion shows the signal-to-error ratio of the compressive

sensing reconstruction is approximately 16 dB when randomly selecting

only 7.5% of the total points.

Index Terms—Channel Modelling, Compressive Sensing, Radiowave

Propagation

I. INTRODUCTION

The spatial patterns created by the superposition of various time-

harmonic electric and magnetic fields can provide significant insights

into radio-wave propagation processes, leading to the identification

of the dominant propagation mechanisms for indoor and outdoor

environments [1], [2]. This information can be useful to wireless

system planners, for example, Poynting-vector streamlines projected

through a multi-storey building can be used to infer the propagation

paths and the optimal locations of frequency selective shielding to

reduce unwanted interference [3], [4]. Computational electromagnetic

techniques, such as the finite-difference time-domain (FDTD) or ray-

tracing methods based on geometrical optics, are increasingly used to

model radio wave propagation for indoor and outdoor channels and

can provide accurate results. However, computational solutions can

be sensitive to uncertainties in the description of the environment and

in material properties [5], [6], potentially leading to misidentification

of the propagation mechanisms and paths. Accordingly, conclusive

identification of the dominant propagation mechanisms is only pos-

sible via experimental measurements of the channel in the region(s)

of interest.

Previous research has focused on densely sampling the electric

field over a planar or volumetric region of space to create a synthetic

aperture to estimate the dominant propagation paths, e.g., [7]–[9].

However, these measurements can be time consuming to perform, as

a sufficiently fine sampling grid over a region multiple wavelengths

in size is typically required. For example, in [9], 10,000 spatial

measurements (over a 1 m2 grid) were used to estimate the three-

dimensional angle-of-arrival for indoor ultra-wideband channels (with

a sampling density of 2.8–9.6 samples/wavelength). Similarly, in [8]

the sampling resolution was 6.75 samples/wavelength. Furthermore,

it is often assumed that the channel remains static while the mea-

surements are completed, but, given the (potentially) long duration

required, this assumption may be invalid. A different approach was

taken in [1], where to alleviate the need to densely sample the spatial

field, a quasi two-dimensional conjoint cylindrical wave expansion

was used to interpolate and reconstruct the interior electric field from

perimeter measurements around a 0.83× 0.83 m planar region.
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Contributions: This paper investigates the use of compressive

sensing to reconstruct the spatial electric field distribution over a

two-dimensional plane from a limited number of randomly positioned

sample points. The resulting image of the radio channel can be used

to identify and examine the propagation mechanisms that dominate

in the measurement region. Compressive sensing is a recent signal

processing technique that can very efficiently reconstruct an under-

sampled signal by exploiting sparsity in one or more of the signal

domains [10]. It has previously been applied to a number of prob-

lems in electromagnetics, including antenna array synthesis, inverse

scattering, direction-of-arrival estimation, and imaging [11]. In [12] a

phaseless compressive sensing approach was developed for near-field

antenna measurements using a discrete Fourier basis. Of particular

relevance to this work, in [13] compressive sensing was used in

an attempt to reduce the number of measurements points required

to reconstruct the multipath fading envelope for an outdoor/urban

radio propagation channel. However, analysis was restricted to linear

one-dimensional measurements and the sparsity model lacked an

electromagnetic basis. In this paper, compressive sensing is applied

to samples of the (complex) time harmonic electric field, E, not to

the fading envelope, |E|, as in [13]. In particular, it is shown that the

time harmonic field can be decomposed via the plane wave angular

spectrum to a sparse representation in the spatial-frequency domain,

which does not necessarily hold for |E|.

II. FIELD RECONSTRUCTION USING

COMPRESSIVE SENSING

Many signals appear random and distinctly non-sparse in the

measured domain (e.g., position), however, there often exists a sparse

representation in some other domain (e.g., the spatial frequency

domain). For indoor and outdoor radio channels, the spatially varying

electric field measured over a planar region is caused by the superpo-

sition of multiple components, e.g., from reflection, diffraction and

scattering from objects in the surrounding environment [14, pp. 217–

226]. In many cases it is possible to model these propagation effects

(and the resulting electric field distribution) using a superposition

of plane waves [1], [14]. In this section we will briefly outline the

theory of compressive sensing and develop a formulation that can be

applied to reconstruct the spatial-domain electric field arising from

the summation of arbitrary plane waves using a limited number of

sample points.

A. Overview of Compressive Sensing

Consider a signal vector, y ∈ C
N , that is K-sparse with K ≪ N ,

i.e., only K elements in y have non-zero values. Suppose also that

y cannot be measured directly, and can only be measured in some

transformed domain. The signal in the transformed domain, x ∈ C
D ,

can thus be expressed as

x = Ψy (1)

where Ψ is the D ×N transformation matrix (typically D = N ). It

should be noted that in the transformed domain there is no a priori

guarantee that x will also be sparse. Let Φ represent the M × D

sampling/measurement matrix, where M represents the number of

samples taken of x. We thus have,

b = ΦΨy (2)
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where b represents the vector of measured samples. Typically, to

solve the inverse of (2) using standard l2-norm techniques (such as

least squares) requires M ≥ N , i.e., dense sampling of x. The theory

of compressive sensing allows us to collect relatively few samples of

x in order to estimate y, i.e., with M ≪ N , which would typically be

an ill-posed problem as (2) would be severely under-determined. In

particular, it has been shown in [10] that under conditions of sparsity

y is the solution to the minimisation,

min ‖y‖0, such that b = ΦΨy (3)

where ‖y‖0 is the l0-norm of y. The l0-norm is difficult to evaluate,

but recent results have shown a relaxation to the l1-norm can

provide a good approximation to (3), if columns of matrix ΦΨ
are as orthogonal as possible (for all sets of columns) [10]. In

practise this condition can be achieved by randomising the sampling

matrix, Φ. In this paper, we solve the l1-norm relaxation of (3)

using an implementation of the orthogonal matching pursuit (OMP)

algorithm. OMP is a greedy algorithm, that iteratively finds the

set of components from the overcomplete dictionary, ΦΨ, that best

approximates the sampled signal, b [15]. On each iteration, the

component that maximises the inner product of the residual (initially

this is b) with ΦΨ is selected [15]. This component is then subtracted

from the residual, and the process is repeated until convergence is

reached, or a maximum number of iterations have been completed.

B. Application of Compressive Sensing to an Arbitrary Plane Wave

Expansion

The electric field within the two-dimensional planar region (on the

x̂ŷ plane, with z = 0) of interest is modelled as the summation of I

incident homogeneous plane waves with random phase, magnitude,

and angle of arrival. In particular, the azimuth, φ, is assumed to be

uniformly distributed over 0 − 360◦. However, the elevation, θ, is

restricted to be uniformly distributed over 90◦ ± 16◦, as previous

analysis of outdoor radio channels has indicated the majority of the

energy arrives only slightly above or below the horizon [16]. The

Ez component of the time harmonic electric field within the planar

region can be written as

Ez(r) =
I∑

i=1

Eie
−jki·r (4)

where r is the observation point in the two-dimensional region (i.e.,

the ẑ component of r is zero), and kn is the wave-vector of the n-th

plane wave, given by

ki = k0 [cos(φi) sin(θi)x̂+ sin(φi) sin(θi)ŷ + cos(φi)ẑ] (5)

where k0 = 2π

λ
is the wave number. It is assumed that Ei is complex

Gaussian distributed, i.e., the real and imaginary parts of Ei are

independently Gaussian distributed.

Based on the compressive sensing framework outlined in section

II-A and (4) we propose a two-dimensional inverse discrete Fourier

transform (IDFT) matrix for Ψ, which can be computed as the outer

product of two one-dimensional IDFT matrices. The planar Ez field

is represented by x in (1), and the corresponding plane wave angular

spectrum (via the IDFT matrix, Ψ) is represented by y. Both x

and y are inherently two-dimensional, but can be expressed as one-

dimensional vectors by stacking the matrix columns. The vector of

undersampled Ez field values is represented by b in (2), where Φ
represents a random sampling/measurement matrix.

A particular challenge when using a discrete Fourier-basis in com-

pressive sensing is spectral leakage caused by non-integer frequency

components [17]. While windowing can reduce the impact of spectral

leakage, it effectively reduces the size of the physical working space.
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ŷ
(m

)

1

2

3

4

5

6

7

8

E
le

ct
ri

c 
fi

el
d

 m
ag

n
ti

u
d

e 
(V

/m
)

(b)

Fig. 1. (a) Magnitude of the normalised electric field created by 20
homogeneous plane waves incident on a 0.64 × 0.64 m planar region, also
shown are 205 random sample points (indicated by •), representing 5% of
the total points; (b) Compressive sensing reconstruction of the electric field
magnitude from the 205 sample points, with reconstruction SER of 22.1 dB.

In this paper we oversample the IDFT by a factor of α (i.e., D = αN )

to provide sufficient resolution in the spatial-frequency domain. The

n-th column in the D ×N transform matrix can thus be written as

ωn =
[
e
j2π n

N

0

D e
j2π n

N

1

D · · · ej2π
n

N

d

D · · · ej2π
n

N

D−1

D

]T
(6)

for n = 0 . . . N − 1. The elevation angle is not explicitly considered

in this formulation, but plane waves with θi 6= 90◦ will still have a

sparse representation in the plane wave angular spectrum.

III. NUMERICAL RESULTS

Fig. 1(a) shows the spatial distribution of |Ez| across a 0.64 ×
0.64 m planar region for I = 20, computed from (4). The frequency

of operation is 2.45 GHz and due to constructive/destructive interfer-

ence, the Ez field is detail-rich in the spatial domain, necessitating a

high sampling density (in this case a spatial grid of 0.01 m is used).

However, in the spatial-frequency domain, the field is sparse, in this

case containing only the I = 20 components representing the plane

wave angular spectrum. Also shown in Fig. 1(a) are the randomly
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Fig. 2. SER of the reconstruction, calculated using (7) and averaged over 50
trials, as the proportion of the frame that is sampled is increased.
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Fig. 3. Impact of random Gaussian noise on SER of the reconstruction,
averaged over 50 trials, for 5%, 10% and 15% sampling.

selected locations (uniformly and independently distributed in both

x̂ and ŷ) of the M = 205 sample points, representing 5% of the

total number of grid points, N = 4096. The reconstruction of a

spatial-domain signal from the spatial-frequency domain coefficients

estimated via compressive sensing is plotted in Fig. 1(b). A qualitative

comparison between Fig. 1(a) and (b) suggests that the compressive

sensing reconstruction accurately reproduces the Ez field. The ac-

curacy of the reconstruction is quantified by the signal-to-error ratio

(SER),

SER = 20 log
10

‖Ez‖2

‖Ez − Êz‖2
(7)

where Êz is the estimated Ez in the spatial domain. For the result

shown in Fig. 1(b) the SER is 22.1 dB.

Fig. 2 plots the SER as the number of sample points used for

compressive sensing varies. For each case the SER is averaged

over 50 trials. Sampling the complex Ez field yields a considerable

improvement in the SER, compared to sampling the envelope of the

field, |Ez|. The spectral-frequency domain representation of the elec-

tric field for the superposition of I plane-waves consists of I Dirac

delta functions (i.e., perfectly sparse). However, for |Ez| the spectral-
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Fig. 4. (a) Experimentally measured E field magnitude at 10 GHz over
a 6.7λ × 6.7λ (0.20 × 0.20 m) region, also shown are 188 random sample
points (indicated by •), representing 7.5% of the full data-set; (b) Compressive
sensing reconstruction of the electric field from the 188 random sample points.

frequency representation contains significantly more than I non-zero

components. It is also observed that oversampling (α = 5) the Ez

field significantly increases the SER (by up to 15 dB), compared to

the case when the fields are sampled on the integer (α = 1) DFT

grid. A smaller increase is also observed for |Ez| fields. For both Ez

and |Ez| fields on the oversampled and integer grids, no significant

increase in the SER is observed beyond approximately 10% sampling.

While oversampling allows the position of the peaks in the spatial-

frequency domain to be accurately determined, it does not eliminate

the leakage of energy into adjacent spatial-frequency components and

is responsible for this effect. Only a limited number of these leakage

components can be included in the sparse representation, leading to

a ceiling in the SER of the reconstruction.

To estimate the sensitivity of the compressive sensing approach to

measurement errors, random (complex) Gaussian noise was added to

the sampled fields calculated using (4). Fig. 3 plots the resulting SER

for 5%, 10% and 15% sampling—using the oversampled approach

outlined in Section II-B—as the signal-to-noise ratio (SNR) is varied.

For each case the SER is averaged over 50 trials. This result
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shows the quality of compressive sensing reconstruction can depend

significantly on the SNR of the measurements.

IV. EXPERIMENTAL VALIDATION

The multipath fading pattern in a typical open-plan of-

fice/laboratory space was measured over 8–12 GHz using an xy

positioner and an Agilent E8364A network analyser. An X-band

horn antenna was mounted approximately 1.5 m from the floor and

connected to port 1 of the network analyser via a 1.5 m cable.

Similarly, a biconical antenna, at the same height and mounted on the

xy positioner was connected to port 2. The antennas were separated

by a distance of approximately 3 m, and to create a multipath channel

the X-band horn antenna was orientated to ensure there was no line-

of-sight path to the biconical antenna. 2500 measurements of the

magnitude and phase of the electric field were collected across a

0.20 × 0.20 m region on a 50 × 50 grid, representing a sampling

density of approximately 6–9 samples/wavelength.

Fig. 4(a) shows the magnitude of the 10 GHz electric field

measured at the 2500 points over the 6.7λ × 6.7λ (0.20 × 0.20 m)

region, also indicated are the locations of 288 randomly positioned

sample points, representing 7.5% of the full data set. Fig. 4(b) shows

the compressed sensing reconstruction of the complex-valued electric

field using the 288 samples, with a reconstruction SER of 15.9 dB.

V. CONCLUSIONS

Over a localised region, the spatial fading pattern of a radio channel

can be modelled as the superposition of a finite number of plane

waves with arbitrary magnitude and angles of arrival. Accordingly,

the resulting electric field has a sparse representation in the spatial-

frequency domain. However, sampling can only be performed in the

spatial domain, where, due to multipath, the strength of the field

can vary significantly over a fraction of a wavelength. This in turn

requires a high sampling density, which is is often time-consuming

and costly. Compressive sensing allows us to exploit the sparsity

in the spatial-frequency domain to significantly reduce the number

of samples that must be collected in order to accurately reconstruct

the full field. Experimental results at 10 GHz results show that by

sampling only 7.5% of the complex Ez field over a 6.7λ × 6.7λ
planar region, a reconstruction signal-to-error ratio of approximately

16 dB can be achieved.
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