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Abstract—A self-interference cancellation augmentation tech-
nique based on a NARX (Nonlinear Autoregressive Exogenous)
network model is implemented and evaluated on an OFDM-based
full-duplex system testbed operating at 2.4 GHz. In a comparison
with the state-of-the-art polynomial models, our experimental
results demonstrate the significant computational efficiency of
the proposed NARX model. Specifically, the NARX model with
one hidden layer reduces computations by 83.3% while achieving
the same cancellation level within a bandwidth of 2 MHz.

Index Terms—In-band full-duplex, NARX model, analog im-
pairments, self-interference cancellation, signal processing

I. INTRODUCTION

In-band full-duplex radio systems have gained interest due
to their potential to double spectrum efficiency by transmitting
and receiving a signal simultaneously in the same frequency
band [1]. However, a major technical obstacle to realizing
this operation is the presence of self-interference. The self-
interference signal, originating from the local transmitter, often
has higher power levels compared to the desired signal from
remote transmitters, leading to reception degradation.

Passive self-interference suppression (increasing the passive
isolation between the transmitting and receiving antennas
[2]) and analog cancellation (using a replica signal digitally
generated with another RF chain and/or tapped by an analog
delay line [3], [4]) provide a certain level of self-interference
cancellation. However, in general, these alone are insufficient
to push the self-interference down to the desired level and
are often augmented by a digital cancellation stage [5]. Pre-
viously, digital augmentation has required the modelling of
circuitry imperfections to estimate and remove the distorted
self-interference [6], [7], [8], [9]. Our proposed technique
does not require explicit knowledge of each analog distortion.
Also, implementing the models (e.g., memory polynomials)
to capture cascaded effects can be computationally expensive
[10], but the NARX model-based technique provides a greater
level of cancellation with a significantly lower level of com-
putational cost.

The implementation of machine learning methodologies
for mitigating self-interference has shown promising results.
For instance, the application of a standard gradient descent
algorithm has been explored in self-interference analog can-
cellation techniques to optimize tuning parameters [3]. Fur-
thermore, it has been demonstrated that the use of machine
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learning on multi-tap RF cancellers can accelerate the tuning
process and significantly improve cancellation performance
[11], [12]. In a related work [13], experimental results demon-
strate the effectiveness of feed-forward neural networks, which
achieved a 36% reduction in computational requirements com-
pared to conventional models, with a 7 dB self-interference
nonlinear cancellation (it should be noted that this is in addi-
tion to passive suppression and analog cancellation).

Contemporary nonlinear cancellation techniques are limited
by the need to develop mathematical expressions for various
distortion effects and normally require a considerable number
of computations and parameters [4], [5], [8]. Our proposed
NARX model-based technique can efficiently address the
cascaded nonlinear memory effects of power amplifiers [9]
and IQ imbalance [7] without requiring the explicit modelling
of each nonlinear effect. This approach signifies an additional
cancellation gain achieved beyond conventional techniques.
The key advantage of this augmented approach lies in its
compatibility with other cancellation methods, such as analog
and passive techniques, as it operates within the baseband. This
feature offers significant flexibility to complement and enhance
the performance of existing self-interference mitigation strate-
gies. The primary goal of this paper is to demonstrate the
effectiveness of NARX models in mitigating self-interference
in full-duplex systems by applying them to an OFDM-based
full-duplex experimental system operating at 2.4 GHz. Our
research also includes a comparative analysis with a state-of-
the-art polynomial model, focusing on technical cancellation
performance and computational complexity.

II. SELF-INTERFERENCE SIGNAL MODEL

The performance of conventional digital cancellation tech-
niques is associated with the accuracy of mathematically mod-
elling the received self-interference signal. Assuming there is a
linear and time-invariant channel, the received self-interference
signal in this simple case can be expressed as:

M-1
Yiin(n) = Z hsr(m)x(n —m). (1)
m=0

Here, xz(n) denotes the transmitted digital baseband self-
interference signal, which has been sampled at a rate exceeding
the Nyquist rate and the bandwidth of the signal of interest.
hsr represents the channel impulse response coefficients and
M is the maximum delay considered.

Despite the distinct distortions exhibited by each hardware
component, self-interference models that account for IQ im-
balance and power amplifier distortions have demonstrated



' OFDM
: Baseband

Signal

v

yS[(TL) - yzm(”/)

'Self-Interference
: <

Residual

Digital Linear
Cancellation

NARX Model-Based
Cancellation

Receive Chain

SoUBIRUBI-RS

R

IQ Mixer

Fig. 1. A block diagram of the proposed in-band full-duplex system architecture with the proposed NARX model-based cancellation augmenting any analog

and passive suppression.

effective performance in achieving the desired cancellation
level [8]. Accordingly, the expression for the received self-
interference signal (1) can be modified to incorporate these
effects [8]:
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where z*(n) denotes the conjugation term of z(n), hy,
denotes the model coefficients, M and P denote the memory
depth and the highest nonlinear order number of the model,
separately. Generally, the coefficients of the polynomial model
are estimated using the normal equation based on the least
squares algorithm [9], which involves a lower-upper (LU)
decomposition for the matrix inversion [14]. The regenerated
self-interference signal based on (2), is then subtracted from
the received distorted signal to cancel the self-interference.

However, the number of coefficients which are given by
((Z£2) (B2 +1) — 1) M increases exponentially depend-
ing on the increase of the highest polynomial order number
P. As a result, implementing a polynomial model demands
a significant computational workload and memory storage.
Additionally, the limited adaptability of polynomial models
to dynamic environmental changes often requires frequent re-
estimation of the model coefficients.

III. NARX NEURAL NETWORK IMPLEMENTATION
A. System Overview

The hardware platform of the experimental in-band full-
duplex system mainly consists of a laptop for digital signal
processing and an AD9361 module serving as an analog front
end. The block diagram of the entire system is shown in
Fig. 1. In this setup, a digital QPSK-modulated OFDM signal
z(n), comprising 64 subcarriers with a 2 MHz bandwidth, is
generated using MATLAB. The signal is then up-converted
to a 2.4 GHz RF signal using a DAC (digital-to-analog con-
verter), IQ mixer, and power amplifier. The transmit antenna
radiates the signal to the remote receive antenna. Since the
local transmit antenna and receive antenna are closely located,

the unwanted signal received by the local receiver becomes
self-interference. After down-conversion, the distorted signal
ysr(n) is digitized. Digital cancellation using a neural network
involves two main steps. Firstly, the least squares algorithm
is employed to estimate the linear self-interference y;;,,(n),
as expressed in (1), which is then subtracted from the re-
ceived signal ysy(n). Secondly, the NARX network model
is trained using the transmit signal z:(n) and the residual self-
interference ys1(n) —yuin(n). After training, the NARX model
predicts the nonlinear part of the self-interference, which is
subtracted from yg;(n) — yin(n) to obtain the residual self-
interference. It is important to note that, for an accurate and
repeatable assessment of the NARX model’s experimental
performance, the antenna separation technique illustrated in
Fig. 1 was not utilized. Instead, during the signal power
measurement, the transmit and receive antennas were replaced
with an attenuator to avoid analog front-end saturation. It is
assumed that sufficient analog cancellation has been achieved
so that the entire signal can be captured in the dynamic range
of the receiver ADC.

B. Model Structure

After the digital linear cancellation subtracts the major
linearities, the NARX model, as an alternative to conventional
models, is designed to capture the nonlinear patterns induced
by the hardware. Fig. 2 shows the structure of the implemented
NARX network model with one hidden layer and one output
node during the prediction phase. Each circle on the diagram
represents one node, and the weights represented by the
arrows interconnect those nodes between different layers. As
neural networks can only handle real numbers, the complex
transmitted self-interference baseband signal x(n) is divided
into real and imaginary parts ¢{z(n)} and S{x(n)}. Through
time-delay lines, where one sample instant is represented by
271, the input time-series data R{x(n)} and I{z(n)} are
converted into the input datasets.

Two NARX models with the same parameter settings are
used to predict the real and imaginary parts of the distorted
signal y(n) separately, but the inputs for those neural networks
are the same. This is for modelling the 1Q imbalance more
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Fig. 2. NARX neural network structure with one hidden layer and one output
during prediction phase.

accurately, which results in different influences on in-phase
and quadrature components. The predicted output is fed back
to the input node via a time-delay line, thus forming a closed-
loop structure shown in the diagram for predicting sequential
data of historical dependencies. It is also noted, during the
training phase, the information of the received self-interference
signal is directly provided to the model before prediction.

C. Model Hyperparameters

Hyperparameters play a significant role in determining the
architecture and behaviour of the neural network. They are
not learned from the data but are set before training. Different
choices of hyperparameters can lead to variations in the net-
work’s ability to learn, generalize, and converge to an optimal
solution. In this paper, we consider the impact of the structural
complexity of the NARX model on cancellation. Models with
different numbers of hidden layers were evaluated. Model A,
featuring a simple architecture with a single hidden layer, was
effectively trained with a 20% subset of the total dataset. In
contrast, Model B adopted a more complex structure with two
hidden layers, demanding a larger training dataset. To ensure
the optimal training of Model B, a 40% training percentage
was employed.

The other hyperparameters for the experiment were care-
fully determined through a comprehensive process of try-
ing out various combinations and values. The batch size
corresponds to one OFDM symbol length of 80, allowing
the processing of a complete symbol each time. The epoch
size of 100 specifies how many times the entire dataset is
processed. These choices strike a balance between training
speed and results, considering the dataset’s characteristics and

model architecture. The regularization parameter was assigned
a value of 0.0001. The activation function used at the hidden
layer was the tanh(-) function. The cost function to measure
the network learning performance was the mean squared error
function, and the optimization algorithm employed was the
Levenberg-Marquardt backpropagation algorithm. The weights
and biases were generated using the Nguyen-Widrow initial-
ization algorithm, which ensures an even distribution of the
active region of each neuron and contributes to accelerating
the training progress of the backpropagation algorithm.

IV. EXPERIMENTAL RESULTS
A. Cancellation Performance

Fig. 3 depicts the power spectrum of the transmitted signal,
the signal after digital linear cancellation, the residual signal
after applying the polynomial model and the NARX models,
and the noise floor. The signal power values were calculated
using the Welch’s method, a widely used power spectral
density estimation technique. The noise floor was measured
at the receiver when transmitting all zeros, and it represents
the achievable level of cancellation techniques. The digital
linear cancellation effectively reduces the power of major
linearities by approximately 20 dB. Using the NARX and
polynomial models could both achieve a further decrease in the
residual self-interference. The shallow NARX network (Model
A) outperforms the polynomial model by 0.7 dB, while the
deeper network (Model B) demonstrates an improvement of
approximately 3 dB. This is consistent with the hypothesis
that a deeper network has the potential to learn and represent
the more complex patterns in data. It is also observed that
the polynomial model-based cancellation is not that efficient
in eliminating harmonic distortions and LO leakage, whereas
these limitations are addressed by the NARX Model A and
significantly improved by the NARX Model B. This difference
could be attributed to the inadequate consideration of these
impairments in polynomial models, while the NARX models
explicitly represent them.

B. Comparison of Computations

The required FLOPs (floating-point operations) for achiev-
ing nonlinear cancellation performance with polynomial and
NARX models are shown in Fig. 4. It is noted that the self-
interference cancellation levels specified in this plot are con-
sidered cancellation gain, which focuses on the cancellation
of the nonlinearities and enhances the practical performance
after the digital linear cancellation is implemented, as Fig.
1 implied. Increasing computations (the order number and
memory depth) generally lead to an improved cancellation
performance, but the NARX models exhibit a more consistent
growth in calculations as cancellation results improve com-
pared to the polynomial model. Notably, NARX Model A and
B require significantly fewer computational resources than the
polynomial model at all cancellation levels. For example, at
approximately 9 dB cancellation, NARX Model A with 32
input nodes and one hidden layer of two nodes requires only
16.7% of the FLOPs needed by a 7th-order polynomial model.
Additionally, Model B augment the nonlinear cancellation by
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Fig. 4. Comparison of computational complexity between the NARX and
polynomial models for self-interference nonlinear cancellation in full-duplex
systems.

approximately 3 dB while reducing computations by 62%
compared to the polynomial model. However, it should be
noted that due to the structural complexity, Model B requires
nearly twice the computation of Model A to achieve the
same cancellation performance. Improving the neural network
performance is mainly done by adjusting the number of input
nodes, but significant improvement generally requires the
increase of hidden layer size.

V. CONCLUSIONS

In this paper, we propose a novel self-interference cancel-
lation technique based on the NARX model and evaluate its

performance through experiments on an in-band full-duplex
experimental system. This digital-domain cancellation aug-
ments any passive suppression or analog cancellation in a full-
duplex system. The results demonstrate that the NARX model
outperforms the conventional polynomial model in modelling
analog nonlinearities while requiring fewer computations and
parameters. Furthermore, our investigation of NARX models
with different structures reveals that using deeper networks can
enhance cancellation performance. However, it is important to
carefully select the depth of the neural network to strike a
balance between the desired performance and computational
complexity.
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